Faster Exact Algorithms for Some Terminal Set Problems

  • Rajesh Chitnis
  • Fedor V. Fomin
  • Daniel Lokshtanov
  • Pranabendu Misra
  • M. S. Ramanujan
  • Saket Saurabh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8246)


Many problems on graphs can be expressed in the following language: given a graph G = (V,E) and a terminal set T ⊆ V, find a minimum size set S ⊆ V which intersects all “structures” (such as cycles or paths) passing through the vertices in T. We call this class of problems as terminal set problems. In this paper we introduce a general method to obtain faster exact exponential time algorithms for many terminal set problems. More precisely, we show that

  • Node Multiway Cut can be solved in time O(1.4766n).

  • Directed Unrestricted Node Multiway Cut can be solved in time O(1.6181n).

  • There exists a deterministic algorithm for Subset Feedback Vertex Set running in time O(1.8980n) and a randomized algorithm with expected running time O(1.8826n). Furthermore, Subset Feedback Vertex on chordal graphs can be solved in time O(1.6181n).

  • Directed Subset Feedback Vertex Set can be solved in time O(1.9993n).

A key feature of our method is that, it uses the existing best polynomial time, fixed parameter tractable and exact exponential time algorithms for the non-terminal version of the same problem (i.e. when T = V), as subroutines. Therefore faster algorithms for these special cases will imply further improvements in the running times of our algorithms. Our algorithms for Node Multiway Cut, and Subset Feedback Vertex Set on chordal graphs improve the current best algorithms for these problems and answers an open question posed in [15]. Furthermore, our algorithms for Directed Unrestricted Node Multiway Cut and Directed Subset Feedback Vertex Set are the first exact algorithms improving upon the brute force O*(2n)-algorithms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belmonte, R., Golovach, P.A., Heggernes, P., van ’t Hof, P., Kamiński, M., Paulusma, D.: Finding contractions and induced minors in chordal graphs via disjoint paths. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 110–119. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical Computer Science 411(40), 3736–3756 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen, J., Liu, Y., Lu, S.: An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem. Algorithmica 55(1), 1–13 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Corneil, D., Fonlupt, J.: The complexity of generalized clique covering. Discrete Applied Mathematics 22(2), 109–118 (1988–1989)Google Scholar
  7. 7.
    Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J., Wojtaszczyk, J.: Solving connectivity problems parameterized by treewidth in single exponential time. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 150–159. IEEE (2011)Google Scholar
  8. 8.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut parameterized above lower bounds. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 1–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumerating minimal subset feedback vertex sets. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 399–410. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms, 1st edn. Springer-Verlag New York, Inc., New York (2010)CrossRefMATHGoogle Scholar
  12. 12.
    Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: 27th International Symposium on Theoretical Aspects of Computer Science (STACS), vol. 5, pp. 383–394. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  13. 13.
    Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: STACS, vol. 5, pp. 383–394 (2010)Google Scholar
  14. 14.
    Garg, N., Vazirani, V., Yannakakis, M.: Multiway Cuts in Directed and Node Weighted Graphs. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 487–498. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  15. 15.
    Golovach, P.A., Heggernes, P., Kratsch, D., Saei, R.: An exact algorithm for subset feedback vertex set on chordal graphs. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 85–96. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Gupta, S., Raman, V., Saurabh, S.: Maximum r-regular induced subgraph problem: Fast exponential algorithms and combinatorial bounds. SIAM J. Discrete Math. 26(4), 1758–1780 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kratsch, D., Müller, H., Todinca, I.: Feedback vertex set on at-free graphs. Discrete Applied Mathematics 156(10), 1936–1947 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Mader, W.: Über die Maximalzahl kreuzungsfreier H-Wege. Arch. Math (Basel) 31(4), 387–402 (1978/1979), Google Scholar
  19. 19.
    Marx, D.: Parameterized Graph Separation Problems. Theor. Comput. Sci. 351(3), 394–406 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Mishra, S., Raman, V., Saurabh, S., Sikdar, S.: König deletion sets and vertex covers above the matching size. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 836–847. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Pilipczuk, M., Pilipczuk, M.: Finding a maximum induced degenerate subgraph faster than 2 n. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 3–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Razgon, I.: Computing Minimum Directed Feedback Vertex Set in O *(1.9977n). In: ICTCS, pp. 70–81 (2007)Google Scholar
  24. 24.
    Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7(3), 425–440 (1986)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for chordal graphs. Information Processing Letters 24(2), 133–137 (1987)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Rajesh Chitnis
    • 1
  • Fedor V. Fomin
    • 2
  • Daniel Lokshtanov
    • 2
  • Pranabendu Misra
    • 3
  • M. S. Ramanujan
    • 3
  • Saket Saurabh
    • 2
    • 3
  1. 1.University of MarylandUSA
  2. 2.University of BergenNorway
  3. 3.Institute of Mathematical SciencesIndia

Personalised recommendations