Load and Thermal-Aware VM Scheduling on the Cloud

  • Yousri Mhedheb
  • Foued Jrad
  • Jie Tao
  • Jiaqi Zhao
  • Joanna Kołodziej
  • Achim Streit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8285)


Virtualization is one of the key technologies that enable Cloud Computing, a novel computing paradigm aiming at provisioning on-demand computing capacities as services. With the special features of self-service and pay-as-you-use, Cloud Computing is attracting not only personal users but also small and middle enterprises. By running applications on the Cloud, users need not maintain their own servers thus to save administration cost.

Cloud Computing uses a business model meaning that the operation overhead must be a major concern of the Cloud providers. Today, the payment of a data centre on energy may be larger than the overall investment on the computing, storage and network facilities. Therefore, saving energy consumption is a hot topic not only in Cloud Computing but also for other domains.

This work proposes and implements a virtual machine (VM) scheduling mechanism that targets on both load-balancing and temperature-balancing with a final goal of reducing the energy consumption in a Cloud centre. Using the strategy of VM migration it is ensured that none of the physical hosts suffers from either high temperature or over-utilization. The proposed scheduling mechanism has been evaluated on CloudSim, a well-known simulator for Cloud Computing. Initial experimental results show a significant benefit in terms of energy consumption.


Cloud Computing Green Computing Virtualization VM Scheduling Thermal-aware Scheduler Load Balancing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
  2. 2.
    Beloglazov, A., Buyya, R.: Optimal Online Deterministic Algorithms and Adaptive Heuristic for Energy and Performance Efficient Dynamic Consolidation of Virtual Machines in Cloud Datacenters. Concurrency and Computation: Practice and Experience 24(3), 1397–1420 (2012)CrossRefGoogle Scholar
  3. 3.
    Beloglazov, A., Buyya, R.: Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. In: Proceedings of the 8th International Workshop on Middleware for Grids, Clouds and e-Science (2010)Google Scholar
  4. 4.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: A Toolkit for Modeling and Simulation of Cloud Comp uting Environments and Evaluation of Resource Provisioning Algorithms. Software: Practice and Experience 41(1), 23–50 (2011)Google Scholar
  5. 5.
  6. 6.
  7. 7.
    Hu, J., Gu, J., Sun, G., Zhao, T.: A Scheduling Strategy on Load Balancing of Virtual Machine Resources in Cloud Computing Environment. In: Proceedings of the International Symposium on Parallel Architectures, Algorithms and Programming, pp. 89–96 (2010)Google Scholar
  8. 8.
    Kim, D.-S., Kim, H., Jeon, M., Seo, E., Lee, J.: Guest-Aware Priority-Based Virtual Machine Scheduling for Highly Consolidated Server. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 285–294. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Knauth, T., Fetzer, C.: Energy-aware scheduling for infrastructure clouds. In: Proceedings of the IEEE International Conference on Cloud Computing Technology and Science, pp. 58–65 (2012)Google Scholar
  10. 10.
    Kolodziej, J., Khan, S., Wang, L., Byrski, A., Nasro, M., Madani, S.: Hierarchical Genetic-based Grid Scheduling with Energy Optimization. In: Cluster Coimputing (2013), doi:10.1007/s10586-012-0226-7Google Scholar
  11. 11.
    Kolodziej, J., Khan, S., Wang, L., Kisiel-Dorohinicki, M., Madani, S.: Security, Energy, and Performance-aware Resource Allocation Mechanisms for Computational Grids. In: Future Generation Computer Systems (2012), doi:10.1016/j.future.2012.09.009Google Scholar
  12. 12.
    Kolodziej, J., Khan, S., Wang, L., Zomaya, A.: Energy Efficient Genetic-Based Schedulers in Computational Grids. In: Concurrency and Computation: Practice & Experience (2013), doi:10.1002/cpe.2839Google Scholar
  13. 13.
    Lin, S., Qiu, M.: Thermal-Aware Scheduling for Peak Temperature Reduction with Stochastic Workloads. In: Proceedins of IEEE/ACM RTAS WIP, pp. 53–56 (April 2010)Google Scholar
  14. 14.
    Manzak, A., Chakrabarti, C.: Variable voltage task scheduling algorithms for minimizing energy/power. IEEE Transactions on Very Large Scale Integration System 11(2), 270–276 (2003)CrossRefGoogle Scholar
  15. 15.
    Martin, S., Flautner, K., Mudge, T., Blaauw, D.: Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads. In: Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design, pp. 721–725 (2002)Google Scholar
  16. 16.
    Mell, P., Grance, T.: The NIST Definition of Cloud Computing, http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
  17. 17.
    Menzel, M., Ranjan, R.: CloudGenius: Decision Support for Web Service Cloud Migration. In: Proceedings of the International ACM Conference on World Wide Web (WWW 2012), Lyon, France (April 2012)Google Scholar
  18. 18.
    The Rackspace Open Cloud, http://www.rackspace.com/cloud/
  19. 19.
    Ranjan, R., Buyya, R., Harwood, A.: A Case for Cooperative and Incentive Based Coupling of Distributed Clusters. In: Proceedings of the 7th IEEE International Conference on Cluster Computing (Cluster 2005), Boston, Massachusetts, USA, pp. 1–11 (September 2005)Google Scholar
  20. 20.
    Ranjan, R., Harwood, A., Buyya, R.: A SLA-Based Coordinated Super scheduling Scheme and Performance for Computational Grids. In: Proceedings of the 8th IEEE International Conference on Cluster Computing (Cluster 2006), Barcelona, Spain, pp. 1–8 (September 2006)Google Scholar
  21. 21.
    Skadron, K., Abdelzaher, T., Stan, M.R.: Control-theoretic techniques and thermal-rc modeling for accurate and localized dynamic thermal management. In: Proceedings of the 8th International Symposium on High-Performance Computer Architecture, HPCA 2002, p. 17. IEEE Computer Society, Washington, DC (2002)Google Scholar
  22. 22.
    SpecPower08, http://www.spec.org
  23. 23.
    Wang, L., Khan, S.: Review of performance metrics for green data centers: a taxonomy study. The Journal of Supercomputing 63(3), 639–656 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wang, L., Khan, S., Chen, D., Kolodziej, J., Ranjan, R., Xu, C., Zomaya, A.: Energy-aware parallel task scheduling in a cluster. Future Generation Computer Systems 29(7), 1661–1670 (2013)CrossRefGoogle Scholar
  25. 25.
    Wang, L., Khan, S., Dayal, J.: Thermal aware workload placement with task-temperature profiles in a data center. The Journal of Supercomputing 61(3), 780–803 (2012)CrossRefGoogle Scholar
  26. 26.
    Wang, L., Laszewski, G., Younge, A., He, X., Kunze, M., Tao, J., Fu, C.: Cloud Computing: a Perspective Study. New Generation Computing 28(2), 137–146 (2010)CrossRefMATHGoogle Scholar
  27. 27.
    Wang, L., Tao, J., von Laszewski, G., Chen, D.: Power Aware Scheduling for Parallel Tasks via Task Clustering. In: Proceedings of the IEEE 16th International Conference on Parallel and Distributed Systems, ICPADS (2010)Google Scholar
  28. 28.
    Wang, Y., Wang, X., Chen, Y.: Energy-efficient virtual machine scheduling in performance-asymmetric multi-core architectures. In: Proceedings of the 8th International Conference on Network and Service Management and 2012 Workshop on Systems Virtualiztion Management, pp. 288–294 (2012)Google Scholar
  29. 29.
    Windows Azure Platform, http://www.microsoft.com/windowsazure
  30. 30.
    Zhang, S., Chatha, K.S.: Approximation Algorithm for the Temperature-aware Scheduling Problem. In: Proceedins of IEEE/ACM International Conference on Computer-Aided Design, pp. 281–288 (November 2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Yousri Mhedheb
    • 1
  • Foued Jrad
    • 1
  • Jie Tao
    • 1
  • Jiaqi Zhao
    • 2
  • Joanna Kołodziej
    • 3
  • Achim Streit
    • 1
  1. 1.Steinbuch Center for ComputingKarlsruhe Institute of TechnologyGermany
  2. 2.School of Basic ScienceChangchun University of TechnologyChina
  3. 3.Institute of Computer ScienceCracow University of TechnologyPoland

Personalised recommendations