Building Platform as a Service for High Performance Computing over an Opportunistic Cloud Computing

  • German A. Sotelo
  • Cesar O. Diaz
  • Mario Villamizar
  • Harold Castro
  • Johnatan E. Pecero
  • Pascal Bouvry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8285)

Abstract

Platform as a Service providers deliver development and runtime environments for applications that are hosted on the Cloud. In this paper, we present a Platform as a Service model constructed over a desktop-based Cloud infrastructure for developing high performance computing applications taking advantage of unused resources opportunistically. We highlight the key concepts and features of the platform, as well as its innovation on an opportunistic computing and we present the results of several tests showing the performance of the proposed model.

Keywords

IaaS PaaS Cloud Computing High Performance Computing Opportunistic Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosales, E., Castro, H., Villamizar, M.: Unacloud: Opportunistic cloud computing infrastructure as a service. In: Cloud Computing 2011, IARIA, pp. 187–194 (2011)Google Scholar
  2. 2.
    Vecchiola, C., Chu, X., Buyya, R.: Aneka: A software platform for .net-based cloud computing. CoRR abs/0907.4622 (2009)Google Scholar
  3. 3.
    Microsoft.: Windows Azure (2013), http://www.windowsazure.com/ (Online, accessed January 21, 2013)
  4. 4.
    De la Pava Torres, J.Y., Jimenez-Guarin, C.: Magoscloud secure: A secure, highly scalable platform for services in an opportunistic environment. In: 2012 Intl. Conf. on High Performance Computing and Simulation (HPCS), pp. 53–59 (2012)Google Scholar
  5. 5.
    Amazon.: High Performance Computing on AWS (2013), http://aws.amazon.com/hpc-applications/ (online accessed July 2013)
  6. 6.
    Iordache, A., Morin, C., Parlavantzas, N., Feller, E., Riteau, P.: Resilin: Elastic mapreduce over multiple clouds. In: 13th IEEE/ACM CCGrid, pp. 261–268 (2013)Google Scholar
  7. 7.
    Rehr, J.J., Kas, J.J., Vila, F.D., Prange, M.P., Jorissen, K.: Parameter-free calculations of x-ray spectra with feff9. Phys. Chem. Chem. Phys. 12, 5503–5513 (2010)CrossRefGoogle Scholar
  8. 8.
    SabalcoreComputing.: Sabalcore Home (2013), http://www.sabalcore.com/ (accessed January 21, 2013)
  9. 9.
    Doelitzscher, F., Held, M., Reich, C., Sulistio, A.: Viteraas: Virtual cluster as a service. In: IEEE Int. Conf (CloudCom), pp. 652–657 (2011)Google Scholar
  10. 10.
    Berendsen, H., van der Spoel, D., van Drunen, R.: Gromacs: A message-passing parallel molecular dynamics implementation. Computer Physics Communications 91(1-3), 43–56 (1995)CrossRefGoogle Scholar
  11. 11.
    Texas-Advanced-Computer-Center: GotoBLAS2 (2013), http://www.tacc.utexas.edu/tacc-projects/gotoblas2 (accessed January 28, 2013)
  12. 12.
    Wang, L., Tao, J., Ma, Y., Khan, S.U., Kolodziej, J., Chen, D.: Software design and implementation for mapreduce across distributed data centers. Appl. Math. Inf. Sci. 7, 85–90 (2013)CrossRefGoogle Scholar
  13. 13.
    Kolodziej, J., Khan, S.U.: Multi-level hierarchic genetic-based scheduling of independent jobs in dynamic heterogeneous grid environment. Inf. Sci. 214, 1–19 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • German A. Sotelo
    • 1
  • Cesar O. Diaz
    • 2
  • Mario Villamizar
    • 1
  • Harold Castro
    • 1
  • Johnatan E. Pecero
    • 2
  • Pascal Bouvry
    • 2
  1. 1.Universidad de los AndesBogotaColombia
  2. 2.University of LuxembourgLuxembourg-KirchbergLuxembourg

Personalised recommendations