Candidate Set Parallelization Strategies for Ant Colony Optimization on the GPU

  • Laurence Dawson
  • Iain A. Stewart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8285)


For solving large instances of the Travelling Salesman Problem (TSP), the use of a candidate set (or candidate list) is essential to limit the search space and reduce the overall execution time when using heuristic search methods such as Ant Colony Optimisation (ACO). Recent contributions have implemented ACO in parallel on the Graphics Processing Unit (GPU) using NVIDIA CUDA but struggle to maintain speedups against sequential implementations using candidate sets. In this paper we present three candidate set parallelization strategies for solving the TSP using ACO on the GPU. Extending our past contribution, we implement both the tour construction and pheromone update stages of ACO using a data parallel approach. The results show that against their sequential counterparts, our parallel implementations achieve speedups of up to 18x whilst preserving tour quality.


Ant Colony Optimization Graphics Processing Unit CUDA Travelling Salesman 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blazinskas, A., Misevicius, A.: Generating high quality candidate sets by tour merging for the traveling salesman problem. In: Skersys, T., Butleris, R., Butkiene, R. (eds.) ICIST 2012. CCIS, vol. 319, pp. 62–73. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Cecilia, J.M., García, J.M., Nisbet, A., Amos, M., Ujaldon, M.: Enhancing data parallelism for ant colony optimization on GPUs. J. Parallel Distrib. Comput. 73(1), 42–51 (2013)CrossRefGoogle Scholar
  3. 3.
    Dawson, L., Stewart, I.: Improving Ant Colony Optimization performance on the GPU using CUDA. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1901–1908 (2013)Google Scholar
  4. 4.
    Delèvacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel ant colony optimization on graphics processing units. J. Parallel Distrib. Comput. 73(1), 52–61 (2013)CrossRefGoogle Scholar
  5. 5.
    Deng, M., Zhang, J., Liang, Y., Lin, G., Liu, W.: A novel simple candidate set method for symmetric tsp and its application in max-min ant system. In: Advances in Swarm Intelligence, pp. 173–181. Springer (2012)Google Scholar
  6. 6.
    Dorigo, M.: Ant Colony Optimization - Public Software, (last accessed July 31, 2013)
  7. 7.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)Google Scholar
  8. 8.
    NVIDIA: CUDA C Programming Guide, (last accessed July 31, 2013)
  9. 9.
    Rais, H.M., Othman, Z.A., Hamdan, A.R.: Reducing iteration using candidate list. In: International Symposium on Information Technology, ITSim 2008, vol. 3, pp. 1–8. IEEE (2008)Google Scholar
  10. 10.
    Randall, M., Montgomery, J.: Candidate set strategies for ant colony optimisation. In: Proceedings of the Third International Workshop on Ant Algorithms, ANTS 2002, pp. 243–249. Springer, London (2002)Google Scholar
  11. 11.
    Uchida, A., Ito, Y., Nakano, K.: An efficient gpu implementation of ant colony optimization for the traveling salesman problem. In: 2012 Third International Conference on Networking and Computing (ICNC), pp. 94–102 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Laurence Dawson
    • 1
  • Iain A. Stewart
    • 1
  1. 1.School of Engineering and Computing SciencesDurham UniversityDurhamUnited Kingdom

Personalised recommendations