Motion Intensity Code for Action Recognition in Video Using PCA and SVM

  • J. Arunnehru
  • M. Kalaiselvi Geetha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8284)

Abstract

Manual video surveillance is highly expensive and inconvenient in continuous monitoring, by a security personnel. So automatic video surveillance and activity recognition is needed. In this paper, an activity recognition approach is proposed, the difference image is used to extract the motion information based on Region of Interest (ROI). The experiments are carried out on KTH dataset, considering four activities viz (walking, running, waving and boxing) and Weizmann dataset, considering four activities viz (walking, running, waving one hand, waving both hands) with Support Vector Machines (SVM) for classification. This approach shows an overall performance of 94.75% using KTH dataset and 92% using Weizmann dataset to recognize the actions. The performance of the proposed approach is comparable with well known existing methods.

Keywords

Video Surveillance Activity Recognition Gesture Recognition Principal Component Analysis Support Vector Machines Motion Intensity Code 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poppe, R.: Vision-based human motion analysis: an overview. Computer Vision and Image Understanding (CVIU) 108(1-2), 4–18 (2007)CrossRefGoogle Scholar
  2. 2.
    Poppe, R.: A survey on vision-based human action recognition. IVC 28, 976–990 (2010)CrossRefGoogle Scholar
  3. 3.
    Turaga, P., Chellappa, R., Venkatramana Subrahmanian, S., Octavian Udrea, O.: Machine recognition of human activities: a survey. IEEE Transactions on Circuits and Systems for Video Technology 18(11), 1473–1488 (2008)CrossRefGoogle Scholar
  4. 4.
    Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based methods for action representation, segmentation and recognition. Computer Vision and Image Understanding (CVIU) 115(2), 224–241 (2011)CrossRefGoogle Scholar
  5. 5.
    Wang, Y., Mori, G.: Human Action Recognition by Semilatent Topic Models. PAMI 31, 1762–1774 (2009)CrossRefGoogle Scholar
  6. 6.
    Bobick, F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(3), 257–267 (2001)CrossRefGoogle Scholar
  7. 7.
    Meng, H., Pears, N., Bailey, C.: A human action recognition system for embedded computer vision application. Computer Visual. Pattern Recognition, 1–6 (2007)Google Scholar
  8. 8.
    Wang, L., Wang, Y., Jiang, T., Zhao, D., Gao, W.: Learning discriminative features for fast frame based action recognition. Pattern Recognition 46(7), 1832–1840 (2013)CrossRefGoogle Scholar
  9. 9.
    Liu, L., Shoa, L., Rockett, P.: Boosted key-frame selection and correlated Pyramid motion-feature representation for human action recognition. Pattern Recognition 46, 1810–1818 (2013)CrossRefGoogle Scholar
  10. 10.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local SVM approach. In: International Conference on Pattern Recognition, vol. 3, pp. 32–36 (2004)Google Scholar
  11. 11.
    Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: Proc. IEEE International Conferences on Computer Vision, pp. 1395–1402 (2005)Google Scholar
  12. 12.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Phil. Mag. 2, 559–572 (1901)CrossRefGoogle Scholar
  13. 13.
    Hotelling, H.: Analysis of a complex of statistical variables into principal components. Phil. Mag. 24, 417–441 (1933)Google Scholar
  14. 14.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press (2000)Google Scholar
  15. 15.
    Mitchell, T.: Machine Learning. McGraw-Hill Computer science series (1997)Google Scholar
  16. 16.
    Vapnik, V.: Statistical Learning Theory. Wiley, NY (1998)MATHGoogle Scholar
  17. 17.
    Lewis, J.P.: Tutorial on SVM. CGIT Lab, USC (2004)Google Scholar
  18. 18.
    Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 1–27 (2011)CrossRefGoogle Scholar
  19. 19.
    Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition, In Proc. of ICCV (2007)Google Scholar
  20. 20.
    Nowozin, S., Bakir, G., Tsuda, K.: Discriminative subsequence mining for action classification. In: Proc. of ICCV (2007)Google Scholar
  21. 21.
    Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: Proceedings of the 14th International Conference on Computer Communications and Networks, pp. 65–72 (2005)Google Scholar
  22. 22.
    Jia, K., Yeung, D.Y.: Human action recognition using local spatio-temporal discriminant embedding. In: Proc. CVPR, pp. 1–8 (2008)Google Scholar
  23. 23.
    Liu, J., Ali, S., Shah, M.: Recognizing human actions using multiple features. In: Proc. CVPR, pp. 1–8 (2007)Google Scholar
  24. 24.
    Thurau, C.: Behaviour histograms for action recognition and human detection. In: International Workshop on Human Motion with ICCV (2007)Google Scholar
  25. 25.
    Klaser, A., Marszalek, M., Schmid, C.: A Spatio-temporal descriptor based on 3D-gradients. In: Proc. BMVC, pp. 1–8 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • J. Arunnehru
    • 1
  • M. Kalaiselvi Geetha
    • 1
  1. 1.Department of Computer Science and EngineeringAnnamalai UniversityIndia

Personalised recommendations