Tuning of Expansion Terms by PRF and WordNet Integrated Approach for AQE

  • Ramakrishna Kolikipogu
  • B. Padmaja Rani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8284)

Abstract

Vocabulary mismatch in Information retrieval can be solved by Query Expansion (QE) techniques. Relevance feedback is a prominent solution to improve recall of retrieval system. Sometimes user may be reluctant and novice in providing feedback to improve the retrieval performance. Pseudo Relevance Feedback (PRF) automates the process. PRF treats top ranked resultant items are relevant and uses them to expand the query, which is not always correct. PRF by local analysis does not give guarantee to feedback positive terms to the system. Use of global analysis to capture the positive feedback is a regular practice in information retrieval process. This paper addresses the limitations of local analysis and global analysis alone by a novel approach that integrates both PRF and WordNet to select good expansion terms. The proposed solution filters the expansion terms and optimizes the expanded query. The proposed work is carried out on a huge Telugu text corpus collected from Wikipedia and other Telugu daily news portals.

Keywords

Query Expansion Pseudo Relevance Feedback Automatic Query Expansion WordNet Expansion Terms Good terms Information Retrieval Indian languages Telugu language 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Soergel, D.: Indexing and retrieval performance: The logical evidence. Journal of the American Society for Information Science (May 1994)Google Scholar
  2. 2.
    Rocchio, J.J.: Relevance Feedback in Information Retrieval. In: The SMART Retrieval System: Experiments in Automatic Document Processing (1971)Google Scholar
  3. 3.
    Xu, J., Bruce Croft, W.: Query expansion using local and global document analysisGoogle Scholar
  4. 4.
    Conlon, S., Lukose, S., J.G.H.: Automatically extracting and tagging business information for e-business systems using linguistic analysis (2008)Google Scholar
  5. 5.
    Hoeber, O., Yang, X.-D., Yao, Y.: Conceptual query expansion. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS (LNAI), vol. 3528, pp. 190–196. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Egidio Terra, C.L.A.C.: Scoring missing terms in information retrieval tasks. In: Proceedings of International Conference on Information and Knowledge Management - CIKM, pp. 50–58 (2004)Google Scholar
  7. 7.
    Wei, C.-P., Hu, P.J.-H., Tai, C.-H.: Managing word mismatch problems in information retrieval: A topic-based query expansion approach. Journal of Management Information Systems 24(3), 269–295 (2007)CrossRefGoogle Scholar
  8. 8.
    Prasenjit Mujumder, M.M.: Indian Language Information Retrieval. In: Guide to OCR for Indic Scripts Advances in Pattern Recognition (2010)Google Scholar
  9. 9.
    Patel, D., Madalli, D.P.: Scoring missing terms in information retrieval tasks. In: Proceedings of International Conference on Information and Knowledge Management - CIKM, pp. 50–58 (2004)Google Scholar
  10. 10.
    Prasad, P.V.: Recall Oriented Approaches for improved Indian Language Information Access. In: International Institute of Information Technology, Hyderabad, India (2009)Google Scholar
  11. 11.
    Spink, A., Wolfram, D.,M.B.J.J.: Searching the web: The public and their queries. Journal of the American Society for Information Science and Technology 52(3), 226–234Google Scholar
  12. 12.
    Salton, B.: Improving retrieval performance by relevance feedback. Journal of the American Society for Information Science 41(4), 288–297 (1990)CrossRefGoogle Scholar
  13. 13.
    Xu, J., Croft, W.B.: Improving the effectiveness of information retrieval with local context analysis. ACM Transactions on Information Systems 18(1), 79–112 (2000)CrossRefGoogle Scholar
  14. 14.
    Christopher, D., Manning, H.S., Raghavan, P.: An Introduction to Information Retrieval. Cambridge University Press (2009)Google Scholar
  15. 15.
    Magennis, M., van Rijsbergen, C.J.: The potential and actual effectiveness of interactive query expansion. In: Proceedings of ACM-SIGIR Int. Conf. on Research and Development in Information Retrieval, New York, pp. 324–332 (1997)Google Scholar
  16. 16.
    Ruthven, I.: Re-examining the potential effectiveness of interactive query expansion. In: Proceedings of ACM-SIGIR Int. Conf. on Research and Development in Information Retrieval, New York, pp. 213–220 (2003)Google Scholar
  17. 17.
    Carpineto, C.: Automatic query expansion in information retrieval. ACM Computing Surveys (CSUR) 44, 1–49 (2012)CrossRefGoogle Scholar
  18. 18.
    Maron, M.E., Kuhns, J.L.: On relevance, probabilistic indexing and information retrieval. Journal of Association of Computing machinery 7(3), 216–244 (1960)CrossRefGoogle Scholar
  19. 19.
    Robertson, S.E., Walker, S.: Okapi or keenbow. In: Proceeding of Text Retrieval Conference (TREC), pp. 151–161. NIST Special Publication, Gaithersburg (1999)Google Scholar
  20. 20.
    Glen Robertson, X.G.: Improving abraq: An automatic query expansion algorithm. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (August 2010)Google Scholar
  21. 21.
    Ian Ruthven, M.L.: A survey on the use of relevance feedback for information access systems. The Knowledge Engineering Review 18(2), 95–145 (2003)CrossRefGoogle Scholar
  22. 22.
    Le Zhao, J.C.: Automatic term mismatch diagnosis for selective query expansion. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 515–524 (August 2012)Google Scholar
  23. 23.
    Ramakrishna Kolikipogu, P.R.B.: Wordnet based terms selection for pseudo relevance feedback model. In: Proceedings of 3rd International IEEE Conferences on Computing, Modeling and Simulation, Mumbai, India, January 2011, pp. 127–131 (2011)Google Scholar
  24. 24.
    Mitra, M., S.A., Buckley, C.: Improving automatic query expansion. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Melbourne, Australia, August 24-28, pp. 206–214 (1998)Google Scholar
  25. 25.
    Vechtomova, O., Karamuftuoglu, M.: Elicitation and use of relevance feedback information. Information Processing Magazine 42(1), 191–206Google Scholar
  26. 26.
    Tennier, X., de Groc, C.: Experiments on pseudo relevance feedback using graph random walks. In: Proceedings of String Processing and Information Retrieval, Canada de indias, Colombia, October 21-25, pp. 193–198 (2012)Google Scholar
  27. 27.
    Hao Wu, H.F.: An incremental approach to efficient pseudo-relevance feedback. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, August 1, pp. 553–562 (2013)Google Scholar
  28. 28.
    Ramakrishna Kolikipogu, P.R.B.: Reformulation of telugu web query using word semantic relationships. In: Proceedings of ACM-International Conference on Advances in Computing, Communications and Informatics, Chenai, India, pp. 774–780 (October 2012)Google Scholar
  29. 29.
    Liu, S, L.F.Y.C.T.M.W.: An effective approach to document retrieval via utilizing wordnet and recognizing phrases. In: Proceedings of the 16th ACM-International Conference on Database and Expert Systems Applications, Sheffield, UK, July 25-29, pp. 266–272 (2004)Google Scholar
  30. 30.
    Gong, Z., Cheang, C.W., U.L.H.: Web query expansion by wordnet. In: Proceedings of the 16th ACM-International Conference on Database and Expert Systems Applications, Copenhagen, Denmark, August 22, pp. 166–175 (2005)Google Scholar
  31. 31.
    Salton, G.: The SMART Retrieval System Experiments in Automatic Document Processing. Prentice-Hall, Upper Saddle River (1971)Google Scholar
  32. 32.
    Rohit Gupta, P.G., sapan: Transliteration among indian languages using wx notation. In: Proceedings of Konvens 2010, Saarbrcken, Germany, pp. 147–150 (September 2010)Google Scholar
  33. 33.
    Ramakrishna Kolikipogu, P.R.B.: Study of indexing techniques to improve the performance of information retrieval in telugu language. International Journal of Emerging Technology and Advanced Engineering 3(1), 482–491 (2013)Google Scholar
  34. 34.
    Uma Maheswara, G., Amba kulkarni, C.M.: A telugu morphological analyzer. In: Proceedings of International Telugu Internet Conference, Milpitas, US, pp. 1–7 (February 2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Ramakrishna Kolikipogu
    • 1
  • B. Padmaja Rani
    • 1
  1. 1.Department of IT & Department of CSESWEC & JNTUH College of EngineeringHyderabadIndia

Personalised recommendations