FI-FCM Algorithm for Business Intelligence

  • P. Prabhu
  • N. Anbazhagan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8284)

Abstract

Business Intelligence combines the large data with analytical tools to present knowledge to the decision makers. It is used to understand the trends,future directions ,capabilities and technologies in the business. It has set of methods, process and technologies that transform raw data into meaningful information. Data Mining is one of Business Intelligence techniques that are used to obtain knowledge from data. The applications of business intelligence includes E-commerce recommender system, approval of bank loan, credit/debit card fraud detection etc., In this paper we have proposed FI-FCM algorithm for Business intelligence based on frequent itemsets and Fuzzy C Means clustering to extract the intelligence from the dataset in order to make the decision making process more efficient and to improve the business intelligence. E-commerce recommender system applications is selected to experiment this algorithm to help customers to find ,recommend products they wish to purchase by producing the list of recommended products.

Keywords

Business Intelligence Frequent Itemset k-means Clustering Data Mining Decision Making Recommender system E-commerce 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wimalasuriya, D.C., Ramachandran, S., Dou, D.: Clustering zebrafish genes based on frequent-itemsets and frequency levels. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 912–920. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases, IBM Research Center. In: Proceedings of the 1993 ACM SIGMOD Conference, Washington DC, USA (May 1993)Google Scholar
  3. 3.
    Han, J., Kamber, M.: Data Mining concepts and Techniques, 2nd edn. Morgan Kaufmann Publishers, San Fracisco (2006)Google Scholar
  4. 4.
    Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20(1), 53–65 (1987)CrossRefMATHGoogle Scholar
  5. 5.
    Han, J., Pei, H., Yin, Y.: Mining Frequent Patterns without Candidate Generation. In: Proc. Conf. on the Management of Data (SIGMOD 2000), Dallas, TX. ACM Press, New York (2000)Google Scholar
  6. 6.
    Rendn, E., Abundez, I., Arizmendi, A., Quiroz, E.M.: Internal versus External cluster validation indexes. International Journal of Computers and Communications 5(1), 27–34 (2011)Google Scholar
  7. 7.
    Al-Zoubi, M.B., Hudaib, A., Al-Shboul, B.: A fast fuzzy clustering algorithm. In: Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, pp. 28–32 (February 2007)Google Scholar
  8. 8.
    Stackowiak, R., Rayman, J., Greenwald: R Oracle Data Warehousing and Business Intelligence Solutions. Wiley Publishing, Inc., Indianapolis (2007)Google Scholar
  9. 9.
    Julashokria, M., Fathian, M., Gholamian, M.R., Mehrbod, A.: Improving electronic customers’ profile in recommender systems using data mining techniques. Management Science Letters 1, 449–456 (2011)CrossRefGoogle Scholar
  10. 10.
    Wach, E.P.: Automated Ontology Evolution for an E-Commerce Recommender,INFORMATIK 2011 - Informatik schafft Communities 41. Jahrestagung der Gesellschaft fr Informatik, Berlin (2011)Google Scholar
  11. 11.
    Venu Babu, R., Srinivas, K.: A New Approach for Cluster Based Collaborative Filters. International Journal of Engineering Science and Technology 2(11), 6585–6592 (2010)Google Scholar
  12. 12.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-Based Collaborative Filtering Recommendation, Algorithms, WWW 10, Hong Kong, May 1-5. ACM (2001) 1-58113-348-0/01/0005Google Scholar
  13. 13.
    Kutzkov, K.: Improved counter based algorithms for frequent pairs mining in transactional data streams. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 843–858. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • P. Prabhu
    • 1
  • N. Anbazhagan
    • 2
  1. 1.Directorate of Distance EducationAlagappa UniversityKaraikudiIndia
  2. 2.Department of MathematicsAlagappa UniversityKaraikudiIndia

Personalised recommendations