A Novel Bat Algorithm Based Re-tuning of PI Controller of Coal Gasifier for Optimum Response

  • Rangasamy Kotteeswaran
  • Lingappan Sivakumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8284)


In this paper a novel BAT algorithm, a recently developed metahuristic algorithm is used to retune the parameters of pressure loop PI controller of coal gasifier, which is a highly nonlinear multivariable process having five controllable inputs and four outputs and strong interactions among the control loops. Functioning of coal gasifier involves many constraints to be satisfied on inputs and outputs. The existing controller along with its tuned parameters does not able to satisfy the constraints at 0% load for sinusoidal pressure disturbance and provides better response at 100% and 50% load conditions. The parameter of pressure loop PI controller is re-tuned using Lévy Flight (LF) guided BAT algorithm and performance tests which includes, pressure disturbance test, load change test and coal quality test are conducted. Test results shows that the re-tuned controller provides better response, meeting all the constraints at 0%, 50% and 100% load conditions.


Bat Algorithm ALSTOM benchmark challenge II Coal gasifier Integrated Gasification Combined Cycle Metahuristic Algorithm Lévy Flight 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dixon, R., Pike, A.W.: Alstom Benchmark Challenge II on Gasifier Control. IEE Proceedings - Control Theory and Applications 153(3), 254–261 (2006)CrossRefGoogle Scholar
  2. 2.
    Chin, C.S., Munro, N.: Control of the ALSTOM gasifier benchmark problem using H2 methodology. Journal of Process Control 13(8), 759–768 (2003)CrossRefGoogle Scholar
  3. 3.
    Al Seyab, R.K., Cao, Y., Yang, S.: Predictive control for the ALSTOM gasifier problem. IEE Proceedings - Control Theory and Application 153(3), 293–301 (2006)CrossRefGoogle Scholar
  4. 4.
    Al Seyab, R.K., Cao, Y.: Nonlinear model predictive control for the ALSTOM gasifier. Journal of Process Control 16(8), 795–808 (2006)CrossRefGoogle Scholar
  5. 5.
    Nobakhti, A., Wang, H.: A simple self-adaptive Differential Evolution algorithm with application on the ALSTOM gasifier. Applied Soft Computing 8(1), 350–370 (2008)CrossRefGoogle Scholar
  6. 6.
    Agustriyanto, R., Zhang, J.: Control structure selection for the ALSTOM gasifier benchmark process using GRDG analysis. International Journal of Modelling, Identification and Control 6(2), 126–135 (2009)CrossRefGoogle Scholar
  7. 7.
    Tan, W., Lou, G., Liang, L.: Partially decentralized control for ALSTOM gasifier. ISA Transactions 50(3), 397–408 (2011)CrossRefGoogle Scholar
  8. 8.
    Huang, C., Li, D., Xue, Y.: Active disturbance rejection control for the ALSTOM gasifier benchmark problem. Control Engineering Practice 21(4), 556–564 (2013)CrossRefGoogle Scholar
  9. 9.
    Sivakumar, L., Anitha Mary, X.: A Reduced Order Transfer Function Models for Alstom Gasifier using Genetic Algorithm. Int. J. of Computer Applications 46(5), 31–38 (2012)CrossRefGoogle Scholar
  10. 10.
    Kotteeswaran, R., Sivakumar, L.: Lower Order Transfer Function Identification of Nonlinear MIMO System-Alstom Gasifier. International Journal of Engineering Research and Applications 2(4), 1220–1226 (2012)Google Scholar
  11. 11.
    Griffin, I.A., Schroder, P., Chipperfield, A.J., Fleming, P.J.: Multi-objective optimization approach to the ALSTOM gasifier problem. Proc. of IMechE, Part I: Journal of Systems and Control Engineering 214(6), 453–469 (2000)Google Scholar
  12. 12.
    Xue, Y., Li, D., Gao, F.: Multi-objective optimization and selection for the PI control of ALSTOM gasifier problem. Control Engineering Practice 18(1), 67–76 (2010)CrossRefGoogle Scholar
  13. 13.
    Yang, X.S.: Bat Algorithm for Multiobjective Optimization. Int. J. Bio-Inspired Computation 3(5), 267–274 (2011)Google Scholar
  14. 14.
    Koffka, K., Sahai, A.: A Comparison of BA, GA, PSO, BP and LM for Training Feed forward Neural Networks in e-Learning Context. International Journal of Intelligent Systems and Applications 4(7), 23–29 (2012)CrossRefGoogle Scholar
  15. 15.
    Yang, X.S.: Firefly algorithm, Lévy flights and global optimization. In: Research and Development in Intelligent Systems XXVI, pp. 209–218. Springer, London (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Rangasamy Kotteeswaran
    • 1
  • Lingappan Sivakumar
    • 2
  1. 1.Department of Instrumentation and Control EngineeringSt. Joseph’s College of EngineeringChennaiIndia
  2. 2.Sri Krishna College of Engineering and TechnologyCoimbatoreIndia

Personalised recommendations