On Emulating Real-World Distributed Intelligence Using Mobile Agent Based Localized Idiotypic Networks

  • Shashi Shekhar Jha
  • Kunal Shrivastava
  • Shivashankar B. Nair
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8284)


Researchers have used Idiotypic Networks in a myriad of applications ranging from function optimization to pattern recognition, learning and even robotics and control. Most of the reported works that have used the Idiotypic network have been simulations wherein not all entities perform in a true distributed, parallel and asynchronous manner. The concentration of an antibody within the network is always assumed to be single valued, which is easily available as a global parameter in such simulated systems. This paper describes a novel architecture and dynamics to emulate an Idiotypic network wherein antibodies within a real physical network interact at antigen-affected nodes, sense their respective global populations stigmergically and form Localized Idiotypic Networks that eventually control their respective global populations across the network. Typhon, a mobile agent platform, running at the various nodes forming the physical network, was used for the emulation. While the mobile agents acted as antibody carriers and ensured their mobility, the nodes forming the physical network formed the antigenic sites. Results, portrayed herein, show the selective rise in global populations of the set of antibodies that are more effective in neutralizing a range of antigens across the network.


Idiotypic networks Emulation Distributed Intelligence Mobile agents Typhon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jerne, N.K.: Towards the network theory of the immune system. Ann. Immunol.(Inst. Pasteur) 125, 373–389 (1974)Google Scholar
  2. 2.
    Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine learning. Physica D: Nonlinear Phenomena 22(1), 187–204 (1986)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Watanabe, Y., Ishiguro, A., Uchikawa, Y.: Decentralized Behavior Arbitration Mechanism for Autonomous Mobile Robot Using Immune Network. In: Dasgupta, D. (ed.) Artificial Immune Systems and Their Applications, pp. 187–209. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Shimooka, T., Shimizu, K.: Idiotypic Network Model for Feature Extraction in Pattern Recognition – Effect of Diffusion of Antibody. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2774, pp. 511–518. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Hart, E., Ross, P.: Studies on the Implications of Shape-Space Models for Idiotypic Networks. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 413–426. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Whitbrook, A.M., Aickelin, U., Garibaldi, J.M.: Two-timescale learning using idiotypic behaviour mediation for a navigating mobile robot. Applied Soft Computing 10(3), 876–887 (2010)CrossRefGoogle Scholar
  7. 7.
    Greensmith, J., Whitbrook, A., Aickelin, U.: Artificial immune systems. In: Handbook of Metaheuristics, pp. 421–448. Springer (2010)Google Scholar
  8. 8.
    White, J.E.: Mobile agents. In: Software agents, pp. 437–472. MIT press (1997)Google Scholar
  9. 9.
    Outtagarts, A.: Mobile Agent-based Applications: a Survey. International Journal of Computer Science and Network Security 9, 331–339 (2009)Google Scholar
  10. 10.
    Dasgupta, D.: Immunity-based intrusion detection system: a general framework. In: Proc. of the 22nd NISSC, vol. 1, pp. 147–160 (1999)Google Scholar
  11. 11.
    De Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)CrossRefGoogle Scholar
  12. 12.
    De Castro, L.N., Timmis, J.: Artificial immune systems: a novel approach to pattern recognition (2002)Google Scholar
  13. 13.
    Godfrey, W.W., Nair, S.B.: An Immune System Based Multi-robot Mobile Agent Network. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 424–433. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future Generation Computer Systems 16(8), 851–871 (2000)CrossRefGoogle Scholar
  15. 15.
    Godfrey, W.W., Nair, S.B.: A Pheromone Based Mobile Agent Migration Strategy for Servicing Networked Robots. In: Suzuki, J., Nakano, T. (eds.) BIONETICS 2010. LNICST, vol. 87, pp. 533–541. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Godfrey, W.W., Nair, S.B.: A bio–inspired technique for servicing networked robots. International Journal of Rapid Manufacturing 2(4), 258–279 (2011)CrossRefGoogle Scholar
  17. 17.
    Godfrey, W.W., Nair, S.B.: A Mobile Agent Cloning Controller for Servicing Networked Robots. In: International Conference on Future Information Technology IPCSIT, vol. 13, pp. 81–85. IACSIT Press (2011)Google Scholar
  18. 18.
    Matani, J., Nair, S.B.: Typhon - A Mobile Agents Framework for Real World Emulation in Prolog. In: Sombattheera, C., Agarwal, A., Udgata, S.K., Lavangnananda, K. (eds.) MIWAI 2011. LNCS, vol. 7080, pp. 261–273. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Shashi Shekhar Jha
    • 1
  • Kunal Shrivastava
    • 1
  • Shivashankar B. Nair
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology GuwahatiIndia

Personalised recommendations