Causality Inference Techniques for In-Silico Gene Regulatory Network

  • Swarup Roy
  • Dipankar Das
  • Dhrubajyoti Choudhury
  • Gunenja G. Gohain
  • Ramesh Sharma
  • Dhruba K. Bhattacharyya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8284)

Abstract

Causality detection in gene regulatory networks (GRN) is a challenging problem due to the limit of available data and lack of efficiency in the existing techniques. A number of techniques proposed so far to reconstruct GRN. However, majority of them ignore drawing causality among genes which indicates regulatory relationship. In this paper, we study few techniques available for inferring causality. We select four state-of-the-art causality detection techniques namely, Bayesian network, Granger causality, Mutual information(MI) and Transfer entropy based approach for our study. Performance of the techniques are evaluated using DREAM challenge data based on associated in-silico regulatory networks. Experimental results reveal the superiority of MI based approach in terms of prediction accuracy in comparison to other techniques.

Keywords

causality gene regulatory networks microarray prediction Bayesian Granger mutual information transfer entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tavazoie, S., Hughes, J., Campbell, M., Cho, R., Church, G., et al.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)CrossRefGoogle Scholar
  2. 2.
    Panchenko, A., Przytycka, T.: Protein-protein interactions and networks: identification, computer analysis, and prediction, vol. 9. Springer (2008)Google Scholar
  3. 3.
    Brazhnik, P., de la Fuente, A., Mendes, P.: Gene networks: how to put the function in genomics. TRENDS in Biotechnology 20(11), 467–472 (2002)CrossRefGoogle Scholar
  4. 4.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to analyze expression data. J. of Computational Biology 7(3-4), 601–620 (2000)CrossRefGoogle Scholar
  5. 5.
    Davidich, M., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3(2), e1672 (2008)Google Scholar
  6. 6.
    Segal, E., et al.: Rich probabilistic models for gene expression. Bioinformatics 17(suppl. 1), S243–S252 (2001)Google Scholar
  7. 7.
    Kuo, W., et al.: Functional relationships between gene pairs in oral squamous cell carcinoma. In: Proc. of AMIA Symposium, pp. 371–375 (2003)Google Scholar
  8. 8.
    Margolin, A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R., Califano, A.: Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(suppl. 1), S7 (2006)Google Scholar
  9. 9.
    Mitra, S., Das, R., Hayashi, Y.: Genetic networks and soft computing. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(1), 94–107 (2011)CrossRefGoogle Scholar
  10. 10.
    De Smet, R., Marchal, K.: Advantages and limitations of current network inference methods. Nature Reviews Microbiology 8(10), 717–729 (2010)Google Scholar
  11. 11.
    Ambroise, J., Robert, A., Macq, B., Gala, J.L., et al.: Transcriptional network inference from functional similarity and expression data: a global supervised approach. Statistical Applications in Genetics and Molecular Biology 11(1), 1–24 (2012)MathSciNetGoogle Scholar
  12. 12.
    Fuente, A.D.L.: What are gene regulatory networks? In: Handbook of Research on Computational Methodologies in Gene Regulatory Networks, pp. 1–27 (2010)Google Scholar
  13. 13.
    Lee, H., Hsu, A., Sajdak, J., Qin, J., Pavlidis, P.: Coexpression analysis of human genes across many microarray data sets. Genome Research 14(6), 1085–1094 (2004)CrossRefGoogle Scholar
  14. 14.
    Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303(5659), 799–805 (2004)CrossRefGoogle Scholar
  15. 15.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to analyze expression data. Journal of Computational Biology 7(3-4), 601–620 (2000)CrossRefGoogle Scholar
  16. 16.
    Dondelinger, F., Husmeier, D., Lèbre, S.: Dynamic Bayesian networks in molecular plant science: inferring gene regulatory networks from multiple gene expression time series. Euphytica 183(3), 361–377 (2012)CrossRefGoogle Scholar
  17. 17.
    Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71–79 (2005)CrossRefGoogle Scholar
  18. 18.
    Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann (1988)Google Scholar
  19. 19.
    Gámez, J.A., Mateo, J.L., Puerta, J.M.: Learning bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood. Data Mining and Knowledge Discovery 22(1-2), 106–148 (2011)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 424–438 (1969)Google Scholar
  21. 21.
    Zhang, Z.G., Hung, Y.S., Chan, S.C., Xu, W.C., Hu, Y.: Modeling and identification of gene regulatory networks: a granger causality approach. In: 2010 International Conference on Machine Learning and Cybernetics (ICMLC), vol. 6, pp. 3073–3078. IEEE (2010)Google Scholar
  22. 22.
    Mukhopadhyay, N.D., Chatterjee, S.: Causality and pathway search in microarray time series experiment. Bioinformatics 23(4), 442–449 (2007)CrossRefGoogle Scholar
  23. 23.
    Nagarajan, R., Upreti, M.: Granger causality analysis of human cell-cycle gene expression profiles. Statistical Applications in Genetics and Molecular Biology 9(1) (2010)Google Scholar
  24. 24.
    Tam, G.H.F., Chang, C., Hung, Y.S.: Gene regulatory network discovery using pairwise Granger causality. IET Systems Biology 7(5), 195–204 (2013)CrossRefGoogle Scholar
  25. 25.
    Priness, I., Maimon, O., Ben-Gal, I.: Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinformatics 8(1), 111 (2007)CrossRefGoogle Scholar
  26. 26.
    Olsen, C., Meyer, P.E., Bontempi, G.: Inferring causal relationships using informationtheoretic measures. In: Proceedings of the 5th Benelux Bioinformatics Conference, BBC 2009 (2009)Google Scholar
  27. 27.
    Faith, J., Hayete, B., Thaden, J., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J., Gardner, T.: Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology 5(1), e8 (2007)Google Scholar
  28. 28.
    Meyer, P., Kontos, K., Lafitte, F., Bontempi, G.: Information-theoretic inference of large transcriptional regulatory networks. EURASIP Journal on Bioinformatics and Systems Biology 2007 (2007)Google Scholar
  29. 29.
    Schreiber, T.: Measuring information transfer. Physical Review Letters 85(2), 461 (2000)CrossRefGoogle Scholar
  30. 30.
    Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons (2012)Google Scholar
  31. 31.
    Banerji, C.R., Severini, S., Teschendorff, A.E.: Network transfer entropy and metric space for causality inference. Physical Review E 87(5), 052814 (2013)Google Scholar
  32. 32.
    Tung, T.Q., Ryu, T., Lee, K.H., Lee, D.: Inferring gene regulatory networks from microarray time series data using transfer entropy. In: Twentieth IEEE International Symposium on Computer-Based Medical Systems, CBMS 2007, pp. 383–388. IEEE (2007)Google Scholar
  33. 33.
    Marbach, D., Schaffter, T., Mattiussi, C., Floreano, D.: Generating realistic in silico gene networks for performance assessment of reverse engineering methods. Journal of Computational Biology 16(2), 229–239 (2009)CrossRefGoogle Scholar
  34. 34.
    Swets, J.A.: Signal detection theory and ROC analysis in psychology and diagnostics: Collected papers. Lawrence Erlbaum Associates, Inc. (1996)Google Scholar
  35. 35.
    Craven, J.: Markov networks for detecting overlapping elements in sequence data. In: Advances in Neural Information Processing Systems 17: Proceedings of the 2004 Conference, vol. 17, p. 193. MIT Press (2005)Google Scholar
  36. 36.
    Roy, S., Bhattacharyya, D.K., Kalita, J.K.: CoBi: Pattern based co-regulated biclustering of gene expression data. Pattern Recognition Letters 34(14), 1669–1678 (2013)CrossRefGoogle Scholar
  37. 37.
    Roy, S., Bhattacharyya, D.K.: Reconstruction of genetic networks in yeast using support based approach. In: Trendz in Information Sciences & Computing (TISC), pp. 116–121. IEEE (2010)Google Scholar
  38. 38.
    Roy, S., Bhattacharyya, D.K.: Mining strongly correlated item pairs in large transaction databases. International Journal of Data Mining, Modelling and Management 5(1), 76–96 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Swarup Roy
    • 1
  • Dipankar Das
    • 1
  • Dhrubajyoti Choudhury
    • 1
  • Gunenja G. Gohain
    • 1
  • Ramesh Sharma
    • 1
  • Dhruba K. Bhattacharyya
    • 2
  1. 1.Dept of ITNorth Eastern Hill UniversityShillongIndia
  2. 2.Dept of CSETezpur UniversityNapaamIndia

Personalised recommendations