Forgery Detection in Ballistic Motion Videos Using Motion Estimation and Modelling

  • Jithin Raj
  • Madhu S. Nair
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8284)

Abstract

In this paper, we propose a method for detection of forgery in ballistic motion videos using motion estimation and modelling. Motion between consecutive frames is estimated using block matching algorithm without interpolation and is represented by a motion vector. State matrices are formed from the motion vector and a Markov process model is applied to it to get the transition probability matrix. By analysing the probability values in this matrix, the transition from one frame to the next is evaluated. For authentic videos, the transition probability matrices for all pair of subsequent frames show uniform characteristics whereas for fake videos, we can see difference in these characteristics. Thus transition probability matrix is used here as a feature vector for classifying a ballistic motion video as an authentic one or fake. The method is evaluated using various original and fake ballistic motion videos and yields good results in both static and moving camera videos.

Keywords

Ballistic Motion Video Forgery Detection Motion Estimation Markov Modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, W., Farid, H.: Exposing digital forgeries in interlaced and de-interlaced video. IEEE Transactions on Information Forensics Security 3(2), 438–449 (2007)CrossRefGoogle Scholar
  2. 2.
    Hsu, C.C., Hung, T.Y., Lin, C.W., Hsu, C.T.: Video forgery detection using correlation of noise residue. In: Proc. IEEE Workshop on Multimedia Signal Processing, pp. 170–174 (2008)Google Scholar
  3. 3.
    Houten, W.V., Geradts, Z.J.: Source video camera identification for multiply compressed videos originating from YouTube. Digital Investigation 6(1-2), 48–60 (2009)CrossRefGoogle Scholar
  4. 4.
    Mondaini, N., Caldelli, R., Piva, A., Barni, M., Cappellini, V.: Detection of malevolent changes in digital video for forensic applications. In: Proc. SPIE Conf. Security, Steganography, and Watermarking of Multimedia Contents (2007)Google Scholar
  5. 5.
    Wang, W., Farid, H.: Exposing digital forgeries in video by detecting double MPEG compression. In: Proc. ACM Multimedia and Security Workshop, pp. 37–47 (2006)Google Scholar
  6. 6.
    Wang, W., Farid, H.: Exposing digital forgeries in video by detecting double quantization. In: Proc. ACM Multimedia and Security Workshop, pp. 39–48 (2009)Google Scholar
  7. 7.
    Chen, W., Shi, Y.Q.: Detection of double MPEG video compression using first digits statistics. In: Proc. Int. Workshop on Digital Watermarking, pp. 16–30 (2008)Google Scholar
  8. 8.
    Conotter, V., OBrien, J.F., Farid, H.: Exposing Digital Forgeries in Ballistic Motion. IEEE Trans. Inf. Forensics Security 7(1), 283–295 (2012)CrossRefGoogle Scholar
  9. 9.
    Thormahlen, T., Broszio, H.: Voodoo Camera Tracker.: A Tool for the Integration of Virtual and Real Scenes, http://www.digilab.uni/~hannover.de/docs/manual.html
  10. 10.
    Chan, S.H., Vo, D.T., Nguyen, T.Q.: Subpixel Motion Estimation Without Interpolation. In: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, pp. 722–725 (2010)Google Scholar
  11. 11.
    Shi, Y.Q., Chen, C., Chen, W.: A Markov Process Based Approach to Effective Attacking JPEG Steganography. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 249–264. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Ghanbari, M.: The Cross-Search Algorithm for Motion Estimation. IEEE Transactions on Communications 38(1), 950–953 (1990)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Jithin Raj
    • 1
  • Madhu S. Nair
    • 1
  1. 1.Department of Computer ScienceUniversity of KeralaThiruvanathapuramIndia

Personalised recommendations