Materialized View Selection Using Memetic Algorithm

  • T. V. Vijay Kumar
  • Santosh Kumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8284)

Abstract

A data warehouse stores historical data for the purpose of answering strategic and decision making queries. Such queries are usually exploratory and complex in nature and have high response time when processed against a continuously growing data warehouse. These response times can be reduced by materializing views in a data warehouse. These views, which contain pre-computed and summarized information, aim to provide answers to decision making queries in an efficient manner. All views cannot be materialized due to space constraints. Also, optimal view selection is shown to be an NP-Complete problem. Alternatively, several view selection algorithms exist, most of these being empirical or based on heuristics like greedy, evolutionary etc. In this paper, a memetic view selection algorithm, that selects the Top-T views from a multi-dimensional lattice, is proposed. This algorithm incorporates the local search improvement heuristic, i.e. Iterative Improvement, into the evolutionary manner for selecting an optimal set of views, from amongst all possible views, in a multidimensional lattice. The purpose is to efficiently select good quality views. This algorithm, in comparison to the better known greedy view selection algorithm, is able to efficiently select better quality views for higher dimensional data sets.

Keywords

Data Warehouse Materialized View Selection Memetic Algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, S., Chaudhari, S., Narasayya, V.: Automated Selection of Materialized Views and Indexes in SQL databases. In: 26th International Conference on Very Large Data Bases (VLDB 2000), Cairo, Egypt, pp. 495–505 (2000)Google Scholar
  2. 2.
    Alkan, A., Ozcan, E.: Memetic Algorithms for Timetabling, IEEE Congress on Evolutionary Computation, pp. 1796–1802 (2003)Google Scholar
  3. 3.
    Aouiche, K., Darmont, J.: Data mining-based materialized view and index selection in data warehouse. Journal of Intelligent Information Systems, 65–93 (2009)Google Scholar
  4. 4.
    Baralis, E., Paraboschi, S., Teniente, E.: Materialized View Selection in a Multidimansional Database. In: 23rd International Conference on Very Large Data Bases (VLDB 1997), Athens, Greece, pp. 156–165 (1997)Google Scholar
  5. 5.
    Chirkova, R., Halevy, A.Y., Suciu, D.: A Formal Perspective on the View Selection Problem. Proceedings of VLDB, 59–68 (2001)Google Scholar
  6. 6.
    Dawkins, R.: The Selfish Gene. Clarendon Press, Oxford (1976)Google Scholar
  7. 7.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)Google Scholar
  8. 8.
    Elbeltagi, E., Hegazy, T., Grierson, D.: Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics, 19, 43–53 (2005)CrossRefGoogle Scholar
  9. 9.
    Golfarelli, M., Rizzi, S.: View Materialization for Nested GPSJ Queries. In: Proceedings of the International Workshop on Design and Management of Data Warehouses (DMDW 2000), Stockholm, Sweden (2000)Google Scholar
  10. 10.
    Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in Genetic Algorithms. Foundations of Genetic Algorithms, MK, 69–93 (1991)Google Scholar
  11. 11.
    Gupta, H., Mumick, I.S.: Selection of Views to Materialize in a Data warehouse. IEEE Transactions on Knowledge & Data Engineering 17(1), 24–43 (2005)CrossRefGoogle Scholar
  12. 12.
    Gupta, H., Harinarayan, V., Rajaraman, V., Ullman, J.: Index Selection for OLAP. In: Proceedings of the 13th International Conference on Data Engineering, ICDE 1997, Birmingham, UK (1997)Google Scholar
  13. 13.
    Haider, M., Vijay Kumar, T.V.: Materialised Views Selection using Size and Query Frequency. International Journal of Value Chain Management (IJVCM) 5(2), 95–105 (2011)CrossRefGoogle Scholar
  14. 14.
    Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing Data Cubes Efficiently. In: ACM SIGMOD, Montreal, Canada, pp. 205–216 (1996)Google Scholar
  15. 15.
    Hart, W.E., Krasnogor, N., Smith, J.E.: Memetic evolutionary algorithms. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms, pp. 3–27. Springer, Berlin (2004)Google Scholar
  16. 16.
    Horng, J.T., Chang, Y.J., Liu, B.J., Kao, C.Y.: Materialized View Selection Using Genetic Algorithms in a Data warehouse System. In: Proceedings of the 1999 congress on Evolutionary Computation, Washington, D. C., USA, vol. 3 (1999) Google Scholar
  17. 17.
    Inmon, W.H.: Building the Data Warehouse, 3rd edn. Wiley Dreamtech India Pvt. Ltd (2003)Google Scholar
  18. 18.
    Ioannidis, Y.E., Kang, Y.C.: Randomized Algorithms for Optimizing Large Join Queries. In: Proceedings of the 1990 ACM Sigmod International Conference on Management of Data, vol. 19(2), pp. 312–321. ACM SIGMOD Record (1990)Google Scholar
  19. 19.
    Lawrence, M.: Multiobjective Genetic Algorithms for Materialized View Selection in OLAP Data Warehouses. In: GECCO 2006, Seattle Washington, USA, July 8-12 (2006)Google Scholar
  20. 20.
    Lehner, W., Ruf, T., Teschke, M.: Improving Query Response Time in Scientific Databases Using Data Aggregation. In: Thoma, H., Wagner, R.R. (eds.) DEXA 1996. LNCS, vol. 1134, Springer, Heidelberg (1996)Google Scholar
  21. 21.
    Lin, Z., Yang, D., Song, G., Wang, T.: User-oriented Materialized View Selection. In: The 7th IEEE International Conference on Computer and Information Technology (2007)Google Scholar
  22. 22.
    Luo, G.: Partial Materialized Views. In: International Conference on Data Engineering (ICDE 2007), Istanbul, Turkey (April 2007)Google Scholar
  23. 23.
    Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press (1999)Google Scholar
  24. 24.
    Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms, Technical Report Caltech Concurrent Computation Program. California Institute of Technology, Pasadena (1989)Google Scholar
  25. 25.
    Nahar, S., Sahni, S., Shragowitz, E.: Simulated Annealing and Combinatorial Optimization. In: Proceedings of 23rd Design Automation Conference, pp. 293–299 (1986)Google Scholar
  26. 26.
    Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: A literature review. Swarm and Evolutionary Computation 2, 1–14 (2012)CrossRefGoogle Scholar
  27. 27.
    Ozcan, E., Mohan, C.K.: Steady State Memetic Algorithm for Partial Shape Matching. In: 7th Annual Conference on Evolutionary Programming, pp. 527–536 (1998)Google Scholar
  28. 28.
    Ozcan, E., Onbasioglu, E.: Genetic Algorithms for Parallel Code Optimization. In: IEEE Congress on Evolutionary Computation (2004)Google Scholar
  29. 29.
    Roussopoulos, N.: Materialized Views and Data Warehouse. In: 4th Workshop KRDB 1997, Athens, Greece (August 1997)Google Scholar
  30. 30.
    Shah, B., Ramachandran, K., Raghavan, V.: A Hybrid Approach for Data Warehouse View Selection. International Journal of Data Warehousing and Mining 2(2), 1–37 (2006)CrossRefMATHGoogle Scholar
  31. 31.
    Teschke, M., Ulbrich, A.: Using Materialized Views to Speed Up Data Warehousing, Technical Report, IMMD 6, Universität Erlangen-Nümberg (1997)Google Scholar
  32. 32.
    Theodoratos, D., Sellis, T.: Data Warehouse Configuration. In: Proceeding of VLDB, Athens, Greece, pp. 126–135 (1997)Google Scholar
  33. 33.
    Valluri, S., Vadapalli, S., Karlapalem, K.: View Relevance Driven Materrialized View Selection in Data Warehousing Environment. Australian Computer Science Communications 24(2), 187–196 (2002)Google Scholar
  34. 34.
    Vijay Kumar, T.V., Ghoshal, A.: A reduced lattice greedy algorithm for selecting materialized views. In: Prasad, S.K., Routray, S., Khurana, R., Sahni, S. (eds.) ICISTM 2009. Communications in Computer and Information Science, vol. 31, pp. 6–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  35. 35.
    Vijay Kumar, T.V., Haider, M., Kumar, S.: Proposing candidate views for materialization. In: Prasad, S.K., Vin, H.M., Sahni, S., Jaiswal, M.P., Thipakorn, B. (eds.) ICISTM 2010. Communications in Computer and Information Science, vol. 54, pp. 89–98. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  36. 36.
    Kumar, T.V.V., Haider, M.: A Query Answering Greedy Algorithm for Selecting Materialized Views. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010, Part II. LNCS, vol. 6422, pp. 153–162. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  37. 37.
    Vijay Kumar, T.V., Goel, A., Jain, N.: Mining Information for Constructing Materialised Views. International Journal of Information and Communication Technology 2(4), 386–405 (2010)CrossRefGoogle Scholar
  38. 38.
    Vijay Kumar, T.V., Haider, M.: Greedy views selection using size and query frequency. In: Unnikrishnan, S., Surve, S., Bhoir, D. (eds.) ICAC3 2011. CCIS, vol. 125, pp. 11–17. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  39. 39.
    Vijay Kumar, T.V., Haider, M., Kumar, S.: A view recommendation greedy algorithm for materialized views selection. In: Dua, S., Sahni, S., Goyal, D.P. (eds.) ICISTM 2011. CCIS, vol. 141, pp. 61–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  40. 40.
    Vijay Kumar, T.V., Haider, M.: Selection of views for materialization using size and query frequency. In: Das, V.V., Thomas, G., Lumban Gaol, F. (eds.) AIM 2011. CCIS, vol. 147, pp. 150–155. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  41. 41.
    Vijay Kumar, T.V., Haider, M.: Materialized Views Selection for Answering Queries. In: Kannan, R., Andres, F. (eds.) ICDEM 2010. LNCS, vol. 6411, pp. 44–51. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  42. 42.
    Vijay Kumar, T.V., Kumar, S.: Materialized view selection using iterative improvement. In: Meghanathan, N., Nagamalai, D., Chaki, N. (eds.) Advances in Computing & Inf. Technology. AISC, vol. 178, pp. 205–213. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  43. 43.
    Vijay Kumar, T.V., Kumar, S.: Materialized view selection using genetic algorithm. In: Parashar, M., Kaushik, D., Rana, O.F., Samtaney, R., Yang, Y., Zomaya, A. (eds.) IC3 2012. CCIS, vol. 306, pp. 225–237. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  44. 44.
    Vijay Kumar, T.V., Kumar, S.: Materialized View Selection Using Simulated Annealing. In: Srinivasa, S., Bhatnagar, V. (eds.) BDA 2012. LNCS, vol. 7678, pp. 168–179. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  45. 45.
    Widom, J.: Research Problems in Data Warehousing. In: 4th International Conference on Information and Knowledge Management, Baltimore, Maryland, pp. 25–30 (1995)Google Scholar
  46. 46.
    Yang, J., Karlapalem, K., Li, Q.: Algorithms for Materialized View Design in Data Warehousing Environment. The Very Large databases (VLDB) Journal, 136–145 (1997)Google Scholar
  47. 47.
    Yousri, N.A.R., Ahmed, K.M., El-Makky, N.M.: Algorithms for Selecting Materialized Views in a Data Warehouse. In: The Proceedings of International Conference on Computer Systems and Applications, AICCSA 2005, pp. 27–1 (2005)Google Scholar
  48. 48.
    Zhang, C., Yao, X., Yang, J.: Evolving Materialized Views in a Data Warehouse. In: IEEE CEC, pp. 823–829 (1999)Google Scholar
  49. 49.
    Zhang, C., Yao, X., Yang, J.: An Evolutionary Approach to Materialized Views Selection in a Data Warehouse Environment. IEEE Transactions on Systems, Man and Cybernatics, 282–294 (2001)Google Scholar
  50. 50.
    Zhang, Q., Sun, X., Wang, Z.: An Efficient MA-Based Materialized Views Selection Algorithm. In: IEEE Intl. Conf. on Control, Automation and Systems Engineering (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • T. V. Vijay Kumar
    • 1
  • Santosh Kumar
    • 1
  1. 1.School of Computer and Systems SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations