Intensity, Shape and Size Based Detection of Lung Nodules from CT Images

  • K. Veerakumar
  • C. G. Ravichandran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8284)


Lung cancer has become one of the most widely spreading diseases in the world. Detection of lung nodules is the initial step in lung cancer detection. We propose an idea to locate the lung nodules based on its intensity, shape and size. Lung CT images are used for detecting the lung nodules. Initially, Variant Ant Colony Optimization algorithm is used to detect the edges. Variant ACO algorithm greatly helps to reduce the False Positives. Nodules centers are detected in the edge detected image based on the proposed black circular neighborhood algorithm. The intensity of the lung nodules are classified based on the input image using the positions of the lung nodule center. We use lung intensity identification algorithm. Finally the malignant lung nodules are identified from the input CT image based on three features – intensity, shape and size.


Edge detection Ant Colony Optimization (ACO) Intensity based clustering Image processing lung CT images 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leung, A., Smithuis, R.: Solitary pulmonary nodule: benign versus malignant Differentiation with CT and PET-CT. Radiology (May 20, 2007),
  2. 2.
    Veerakumar, K., Ravichandran, C.G.: Applying Ant Colony Optimization algorithms and variants for lung nodule detection. Pattern Analysis and Applications (2013) (Communicated)Google Scholar
  3. 3.
    Murphy, K., van Ginneken, B., Schilham, A.M., de Hoop, B.J., Gietema, H.A., Prokop, M.: A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Medical Image Analysis 13(5), 757–770 (2009)CrossRefGoogle Scholar
  4. 4.
    Retico, A., Delogu, P., Fantacci, M.E., Gori, I., Preite Martinez, A.: Lung nodule detection in low-dose and thin-slice computed tomography. Computers in Biology and Medicine 38(4), 525–534 (2008)CrossRefGoogle Scholar
  5. 5.
    Sánchez, C.I., Niemeijer, M., Išgum, I., Dumitrescu, A., Suttorp-Schulten, M.S.A., Abràmoff, M.D., van Ginneken, B.: Contextual computer-aided detection: Improving bright lesion detection in retinal images and coronary calcification identification in CT scans. Medical Image Analysis 16(1), 50–62 (2012)CrossRefGoogle Scholar
  6. 6.
    Suárez-Cuenca, J.J., Tahoces, P.G., Souto, M., Lado, M.J., Remy-Jardin, M., Remy, J., Vidal, J.J.: Application of the iris filter for automatic detection of pulmonary nodules on computed tomography images. Computers in Biology and Medicine 39(10), 921–933 (2009)CrossRefGoogle Scholar
  7. 7.
    Swensen, S.J., Jett, J.R., Hartman, T.E., Midthun, D.E., Mandrekar, S.J., Hillman, S.L., Sykes, A.-M., Aughenbaugh, G.L., Bungum, A.O., Allen, K.L.: CT screening for lung cancer: five-year prospective experience. Radiology 235(1), 259–265 (2005)CrossRefGoogle Scholar
  8. 8.
    Atsushi, T., Fujita, H.: Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter. International Journal of Computer Assisted Radiology and Surgery, 1–13 (2013)Google Scholar
  9. 9.
    van Ginneken, B., Armato, S.G., de Hoop, B., van de Vorst, S., Duindam, T., Niemeijer, M., Murphy, K., et al.: Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study. Medical image analysis 14(6), 707–722 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • K. Veerakumar
    • 1
  • C. G. Ravichandran
    • 2
  1. 1.Department of Electronics and Communication EngineeringRatnaVelSubramaniam College of Engineering and TechnologyDindigulIndia
  2. 2.Excel Engineering CollegeKomarapalayamIndia

Personalised recommendations