An Automatic Method to Locate Tumor from MRI Brain Images Using Wavelet Packet Based Feature Set

  • T. Kalaiselvi
  • Karthigai Selvi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8284)

Abstract

This paper developed a fully automatic method to locate the brain tumor from Magnetic resonance imaging (MRI) head scans using wavelet packet transformation (WPT) based feature set. WPT is used to extract high frequency data from all sub bands of MRI images. Modulus maximum is used to detect singularities among these high frequency features and thus isolates the hyper intense nature of tumors. These tumor areas are detected by preparing a mask of modulated images and then compared it with the original scans. This method does not require any preprocessing operations like seed selection, initialization and skull stripped scans of existing methods. Experiments were done with the sample images collected from popular hospitals and clinics. The results were visually inspected for the outputs. The quantitative validation was done with the Chi-square test. It performed significance study to identify the goodness of fit, the probability of fitness is above 0.75.

Keywords

wavelet packet transformation MRI modulus maximum segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Somasundaram, K., Kalaiselvi, T.: Fully automatic brain extraction algorithm for axial T2-Weighted magnetic resonance images. Computers in Biology and Medicine 40, 811–822 (2010)CrossRefGoogle Scholar
  2. 2.
    Kalaiselvi, T., Somasundaram, K.: Fully Automatic Method to Identify Abnormal MRI Head Scans using Fuzzy Classification and Fuzzy Symmetric Measure. International Journal on Graphics Vision and Image Processing 10(3), 1–9 (2010)Google Scholar
  3. 3.
    Fletcher Health, L.M., Hall, L.O., Goldgof, D.B., Murtagh, F.R.: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artificial Intelligence in Medicine 21, 43–63Google Scholar
  4. 4.
    Ho, S., Bullitt, E., Gerig, G.: Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: Proceeding of International Conference on Pattern Recognition, pp. 532–535 (2002)Google Scholar
  5. 5.
    Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Multispectral brain tumor segmentation based on histogram model adaptation. In: Proceeding of SPIE, vol. 6514 65140(5) (2007)Google Scholar
  6. 6.
    Wang, T., Cheng, I., Basu, A.: Fluid vector flow and application in brain tumor segmentation. IEEE Transaction on Biomedical Engineering 56, 781–789 (2009)CrossRefGoogle Scholar
  7. 7.
    Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., Ahuja, C.K.: A novel content based active contour model for brain tumor segmentation. Magnetic Resonance Imaging 30, 694–715 (2012)CrossRefGoogle Scholar
  8. 8.
    Schoelkopf, B., Smola, A.: Learning with kernels Spport vector machines, Regularization, Optimization and Beyond. MIT Press, Cambridge (2002)Google Scholar
  9. 9.
    Jensen, T.R., Schmainda, K.M.: Computer aided detection of brain tumor invasion using multiparametric MRI. J. Magnetic Resonance Imaging 30, 481–489 (2009)CrossRefGoogle Scholar
  10. 10.
    Kalaiselvi, T., Somasundaram, K., Vijayalakshmi, S.: A novel self initiating brain tumor boundary detection for MRI. In: Balasubramaniam, P., Uthayakumar, R. (eds.) ICMMSC 2012. CCIS, vol. 283, pp. 464–470. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Saha, B.N., Ray, N., Greiner, R., Murtha, A., Zang, H.: Quick detection of brain tumors and edemas: a bounding box method using symmetry. Computer Medical Imaging and Graphics 36, 95–107 (2011)CrossRefGoogle Scholar
  12. 12.
    Somasundaram, K., Kalaiselvi, T.: Automatic detection of brain tumor from MRI scans using maxima transform. In: National Conference on Image Processing (NCIMP) (2010)Google Scholar
  13. 13.
    Ambrosini, R.D., Wang, P., ODell, W.G.: Computer aided detection of metastatic brain tumors using automated three dimensional template matching. Journal of Magnetic Resonance Imaging 31, 85–93 (2010)CrossRefGoogle Scholar
  14. 14.
    Bauer, S., Wiest, R., Nolte, L.-P., Reyes, M.: A survey of MRI based medical image analysis for brain tumor studies. Physics in Medicine and Biology 58, 97–129 (2013)CrossRefGoogle Scholar
  15. 15.
    Tu, C.-L., Hwang, W.-L.: Analysis of singularities from Modulus Maxima of Complex wavelets. IEEE Transaction on Information Theory 51 (2005)Google Scholar
  16. 16.
    Mallat: Characterization of signals from Multiscale edges. IEEE Transactions Pattern Analysis and Machine Intelligence PAM1-14, 710–732 (1992)CrossRefGoogle Scholar
  17. 17.
    Yang, B., Liu, L., Zan, P., Lu, W.: Wavelet Packet-Based Feature Extraction for Brain-Computer Interfaces. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds.) LSMS 2010 and ICSEE 2010. LNCS, vol. 6330, pp. 19–26. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Bouyahia, S., Mbainaibeye, J.M., Ellouze, N.: Wavelet Based Microclacifications detec-tion in Digitized Mammograms. ICGST GMP Journal 8 (2009)Google Scholar
  19. 19.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn., p. 764. Pearson Prentice Hall (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • T. Kalaiselvi
    • 1
  • Karthigai Selvi
    • 1
  1. 1.Image Processing Lab, Department of Computer Science and ApplicationsGandhigram Rural Institute - Deemed UniversityIndia

Personalised recommendations