Face Representation Using Averaged Wavelet, Micro Patterns and Recognition Using RBF Network

  • Thangairulappan Kathirvalavakumar
  • J. Jebakumari Beulah Vasanthi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8284)

Abstract

Recognition of human faces is a very important task in many applications such as authentication and surveillance. An efficient face recognition system with face image representation using averaged wavelet and wavelet packet coefficients, Discriminative Common Vector (DCV) and modified Local Binary Patterns (LBP) and recognition using radial basis function (RBF) network is presented. Face images are decomposed by 2-level wavelet and wavelet packet transformation. The discriminative common vectors are obtained for averaged wavelet. The new proposed LBP operator is applied on the obtained DCV and also applied on averaged wavelet packet coefficients of all the samples of a class. The histogram values obtained from the LBP are recognized using RBF network. The proposed work is tested on three face databases such as Olivetti Oracle Research Lab (ORL), Japanese Female Facial Expression (JAFFE) and Essex face database. The proposed method results in good recognition rates along with less training time because of the extracted discriminant input from the preprocessing steps involved in the proposed work.

Keywords

Face recognition Wavelet Wavelet packets Discriminative common vector Classification Local binary patterns Radial basis function network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs Fisher faces: Recognition using class specific linear projection. IEEE Trans. Pattern Analysis Machine Intelligence 20(7), 711–720 (1997)CrossRefGoogle Scholar
  3. 3.
    Carlos, M.T., Marcos, D.P., Miguel, A.F., Jesus, B.A.: Reducing Features using Discriminative Common Vectors. Cognitive Computation 2, 160–164 (2010)CrossRefGoogle Scholar
  4. 4.
    Cevikalp, H., Neamtu, M., Wilkes, M.: Discriminative common vectors method with kernels. IEEE Trans. Neural Network 17(6), 1550–1565 (2006)CrossRefGoogle Scholar
  5. 5.
    Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative common vectors for face recognition. IEEE Trans. Pattern Analysis Machine Intelligence 27(1), 4–13 (2005)CrossRefGoogle Scholar
  6. 6.
    Er, M.J., Wu, S., Lu, J., Toh, H.L.: Face Recognition with Radial Basis Function (RBF) Neural Networks. IEEE Transactions on Neural Networks 13(3), 697–710 (2002)CrossRefGoogle Scholar
  7. 7.
    Feng, G.C., Yuen, P.C., Dai, D.Q.: Human face recognition using PCA on wavelet subband. J. Electron. Imaging 9, 226–233 (2001)Google Scholar
  8. 8.
    Garcia, C., Zikos, G., Tziritas, G.: Wavelet packet analysis for face recognition. Image and Vision Computing 18, 289–297 (2000)CrossRefGoogle Scholar
  9. 9.
    Jing, X.Y., Yao, Y.F., Yang, J.Y., Zhang, D.: A novel face recognition approach based on kernel discriminative common vectors (KDCV) feature extraction and RBF neural network. Neurocomputing 71, 3044–3048 (2008)CrossRefGoogle Scholar
  10. 10.
    Kathirvalavakumar, T., Vasanthi, J.J.B.: Face representation using Wavelet, DCV and Modified Local Binary Patterns and Recognition by RBF. Journal of Machine Learning and Cybernetics (2013)Google Scholar
  11. 11.
    Li, B., Yin, H.: Face Recognition Using RBF Neural Networks and Wavelet Transform. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 105–111. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Analysis Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  13. 13.
    Pujol, A.F., Garca, J.C.: Computing the Principal Local Binary Patterns for face recognition using data mining tools. Expert Systems with Applications 39(8), 7165–7172 (2012)CrossRefGoogle Scholar
  14. 14.
    Swets, D.L., Weng, J.: Using Discriminant Eigen features for Image Retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence 18(8), 831–836 (1996)CrossRefGoogle Scholar
  15. 15.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(7), 71–86 (1991)CrossRefGoogle Scholar
  16. 16.
    Perlibakas, V.: Face Recognition Using Principal Component Analysis and Wavelet Packet Decomposition. INFORMATICA 15(2), 243–250 (2004)MATHGoogle Scholar
  17. 17.
    Wen, Y.: An improved discriminative common vectors and support vector machine based face recognition approach. Expert Systems with Applications 39(4), 4628–4632 (2012)CrossRefGoogle Scholar
  18. 18.
    Wong, Y.W., Seng, K.P., Ang, L.M.: Dual optimal multiband features for face recognition. Expert Systems with Applications 37(4), 2957–2962 (2010)CrossRefGoogle Scholar
  19. 19.
    Wong, Y.W.: Radial Basis Function Neural Network with Incremental Learning for Face Recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(4), 940–949 (2011)CrossRefGoogle Scholar
  20. 20.
    Zhang, B.L., Zhang, H., Ge, S.S.: Face Recognition by Applying Wavelet Subband Representation and Kernel Associative Memory. IEEE Transactions on Neural networks 15(1), 166–177 (2005)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Zhou, S.R., Yin, J.P., Zhang, J.M.: Local binary pattern (LBP) and local phase quantization (LBQ) based on Gabor filter for face representation. Neurocomputing 116(20), 260–264 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Thangairulappan Kathirvalavakumar
    • 1
  • J. Jebakumari Beulah Vasanthi
    • 2
  1. 1.Department of Computer ScienceV.H.N.S.N CollegeVirudhunagarIndia
  2. 2.Department of Computer ApplicationsA.N.J.A CollegeSivakasiIndia

Personalised recommendations