Incremental Grid-Like Layout Using Soft and Hard Constraints

  • Steve Kieffer
  • Tim Dwyer
  • Kim Marriott
  • Michael Wybrow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)

Abstract

We explore various techniques to incorporate grid-like layout conventions into a force-directed, constraint-based graph layout framework. In doing so we are able to provide high-quality layout—with predominantly axis-aligned edges—that is more flexible than previous grid-like layout methods and which can capture layout conventions in notations such as SBGN (Systems Biology Graphical Notation). Furthermore, the layout is easily able to respect user-defined constraints and adapt to interaction in online systems and diagram editors such as Dunnart.

Keywords

constraint-based layout grid layout interaction diagram editors 

References

  1. 1.
    Barsky, A., Gardy, J.L., Hancock, R.E., Munzner, T.: Cerebral: a cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23(8), 1040–1042 (2007)CrossRefGoogle Scholar
  2. 2.
    Brandes, U., Eiglsperger, M., Kaufmann, M., Wagner, D.: Sketch-driven orthogonal graph drawing. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 1–11. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Chrobak, M., Payne, T.H.: A linear-time algorithm for drawing a planar graph on a grid. Information Processing Letters 54(4), 241–246 (1995)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Inc. (1999)Google Scholar
  5. 5.
    Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: An incremental procedure for separation constraint layout of graphs. IEEE Transactions on Visualization and Computer Graphics 12(5), 821–828 (2006)CrossRefGoogle Scholar
  6. 6.
    Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Dwyer, T., Marriott, K., Wybrow, M.: Dunnart: A constraint-based network diagram authoring tool. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 420–431. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained graph layout. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 230–241. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Kieffer, S., Dwyer, T., Marriott, K., Wybrow, M.: Incremental grid-like layout using soft and hard constraints. Tech. Rep. 2013/275, Monash University (2013), http://www.csse.monash.edu.au/publications/2013/tr-2013-275-full.pdf
  11. 11.
    Kojima, K., Nagasaki, M., Jeong, E., Kato, M., Miyano, S.: An efficient grid layout algorithm for biological networks utilizing various biological attributes. BMC Bioinformatics 8(1), 76 (2007)CrossRefGoogle Scholar
  12. 12.
    Le Novère, N., et al.: The Systems Biology Graphical Notation. Nature Biotechnology 27, 735–741 (2009)CrossRefGoogle Scholar
  13. 13.
    Li, W., Kurata, H.: A grid layout algorithm for automatic drawing of biochemical networks. Bioinformatics 21(9), 2036–2042 (2005)CrossRefMATHGoogle Scholar
  14. 14.
    Marriott, K., Purchase, H., Wybrow, M., Goncu, C.: Memorability of visual features in network diagrams. IEEE Transactions on Visualization and Computer Graphics 18(12), 2477–2485 (2012)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Transactions on Visualization and Computer Graphics 17(5), 626–641 (2011)CrossRefGoogle Scholar
  17. 17.
    Ryall, K., Marks, J., Shieber, S.: An interactive constraint-based system for drawing graphs. In: Robertson, G.G., Schmandt, C. (eds.) Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology, pp. 97–104. ACM Press (1997)Google Scholar
  18. 18.
    Stott, J., Rodgers, P., Martinez-Ovando, J.C., Walker, S.G.: Automatic metro map layout using multicriteria optimization. IEEE Transactions on Visualization and Computer Graphics 17(1), 101–114 (2011)CrossRefGoogle Scholar
  19. 19.
    Sugiyama, K., Misue, K.: Graph drawing by the magnetic spring model. Journal of Visual Languages and Computing 6(3), 217–231 (1995)CrossRefGoogle Scholar
  20. 20.
    Wang, Y.S., Chi, M.T.: Focus+context metro maps. IEEE Transactions on Visualization and Computer Graphics 17(12), 2528–2535 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Steve Kieffer
    • 1
    • 2
  • Tim Dwyer
    • 1
    • 2
  • Kim Marriott
    • 1
    • 2
  • Michael Wybrow
    • 1
    • 2
  1. 1.Caulfield School of Information TechnologyMonash UniversityCaulfieldAustralia
  2. 2.Victoria LaboratoryNational ICT AustraliaAustralia

Personalised recommendations