Drawing Arrangement Graphs in Small Grids, or How to Play Planarity

  • David Eppstein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)

Abstract

We describe a linear-time algorithm that finds a planar drawing of every graph of a simple line or pseudoline arrangement within a grid of area O(n7/6). No known input causes our algorithm to use area Ω(n1 + ε) for any ε > 0; finding such an input would represent significant progress on the famous k-set problem from discrete geometry. Drawing line arrangement graphs is the main task in the Planarity puzzle.

References

  1. 1.
    Shor, P.W.: Stretchability of pseudolines is NP-hard. In: Gritzmann, P., Sturmfels, B. (eds.) Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 531–554. Amer. Math. Soc., Providence (1991)Google Scholar
  2. 2.
    Bose, P., Everett, H., Wismath, S.: Properties of arrangement graphs. International Journal of Computational Geometry & Applications 13(6), 447–462 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Schaefer, M.: Complexity of some geometric and topological problems. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 334–344. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Dolev, D., Leighton, T., Trickey, H.: Planar embedding of planar graphs. Advances in Computing Research 2, 147–161 (1984)Google Scholar
  5. 5.
    Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Transactions on Computers C-30(2), 135–140 (1981)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Klawe, M., Paterson, M., Pippenger, N.: Inversions with \(n^{1+\Omega(1/\sqrt{\log n})}\) transpositions at the median (September 21, 1982) (unpublished manuscript)Google Scholar
  7. 7.
    Tamaki, H., Tokuyama, T.: A characterization of planar graphs by pseudo-line arrangements. Algorithmica 35(3), 269–285 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Sharir, M., Smorodinsky, S.: Extremal configurations and levels in pseudoline arrangements. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 127–139. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Dey, T.L.: Improved bounds for planar k-sets and related problems. Discrete and Computational Geometry 19(3), 373–382 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Tóth, G.: Point sets with many k-sets. Discrete and Computational Geometry 26(2), 187–194 (2001)MathSciNetMATHGoogle Scholar
  11. 11.
    Goodman, J.E.: Pseudoline arrangements. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 83–109. CRC Press (1997)Google Scholar
  12. 12.
    Eppstein, D.: Algorithms for drawing media. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 173–183. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Goodman, J.E.: Proof of a conjecture of Burr, Grünbaum, and Sloane. Discrete Mathematics 32(1), 27–35 (1980)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Muthukrishnan, S., Sahinalp, S.C., Paterson, M.S.: Grid layout of switching and sorting networks. US Patent 6185220 (2001)Google Scholar
  15. 15.
    Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Transactions on Computers C-28(9), 643–647 (1979)CrossRefGoogle Scholar
  16. 16.
    Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. Journal of Computer and System Sciences 38(1), 165–194 (1989); Corrigendum, JCSS 42(2), 249–251 (1991)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Snoeyink, J., Hershberger, J.: Sweeping arrangements of curves. In: Proc. 5th ACM Symp. on Computational Geometry (SCG 1989), pp. 354–363 (1989)Google Scholar
  18. 18.
    Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar graphs. SIGACT News 20, 83–86 (1989)CrossRefGoogle Scholar
  19. 19.
    de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fáry embeddings of planar graphs. In: Proc. 20th ACM Symp. Theory of Computing (STOC 1988), pp. 426–433 (1988)Google Scholar
  20. 20.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proc. 1st ACM/SIAM Symp. Discrete Algorithms (SODA 1990), pp. 138–148 (1990)Google Scholar
  21. 21.
    Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and universal point sets. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 208–219. Springer, Heidelberg (2013)Google Scholar
  22. 22.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified positions. Amer. Math. Monthly 98(2), 165–166 (1991)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Angelini, P., Di Battista, G., Kaufmann, M., Mchedlidze, T., Roselli, V., Squarcella, C.: Small point sets for simply-nested planar graphs. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 75–85. Springer, Heidelberg (2011)Google Scholar
  24. 24.
    Fulek, R., Tóth, C.D.: Universal point sets for planar three-trees. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 341–352. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Khuller, S.: Ear decompositions. SIGACT News 20(1), 128 (1989)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • David Eppstein
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations