Advertisement

Planar and Plane Slope Number of Partial 2-Trees

  • William Lenhart
  • Giuseppe Liotta
  • Debajyoti Mondal
  • Rahnuma Islam Nishat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)

Abstract

We prove tight bounds (up to a small multiplicative or additive constant) for the plane and the planar slope numbers of partial 2-trees of bounded degree. As a byproduct of our techniques, we answer a long standing question by Garg and Tamassia about the angular resolution of the planar straight-line drawings of series-parallel graphs of bounded degree.

Keywords

Planar Graph Maximum Degree Angular Resolution Edge Incident Bounded Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice- Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  2. 2.
    Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes and segments. Computational Geometry 38(3), 194–212 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Garg, A., Tamassia, R.: Planar drawings and angular resolution: Algorithms and bounds. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 12–23. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. 4.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B., Tesar, M., Vyskocil, T.: The planar slope number of planar partial 3-trees of bounded degree. Graphs and Combinatorics 29(4), 981–1005 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kant, G.: Hexagonal grid drawings. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 263–276. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  7. 7.
    Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Knauer, K., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 323–334. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Mondal, D., Nishat, R.I., Biswas, S., Rahman, M.S.: Minimum-segment convex drawings of 3-connected cubic plane graphs. Journal of Combinatorial Optimization 25(3), 460–480 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Mukkamala, P., Pálvölgyi, D.: Drawing cubic graphs with the four basic slopes. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 254–265. Springer, Heidelberg (2011)Google Scholar
  11. 11.
    Papakostas, A., Tollis, I.G.: Improved algorithms and bounds for orthogonal drawings. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 40–51. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • William Lenhart
    • 1
  • Giuseppe Liotta
    • 2
  • Debajyoti Mondal
    • 3
  • Rahnuma Islam Nishat
    • 4
  1. 1.Department of Computer ScienceWilliams CollegeUSA
  2. 2.Dipartimento di Ingegneria Elettronica e dell’InformazioneUniversita’ degli Studi di PerugiaItaly
  3. 3.Department of Computer ScienceUniversity of ManitobaCanada
  4. 4.Department of Computer ScienceUniversity of VictoriaCanada

Personalised recommendations