On Orthogonally Convex Drawings of Plane Graphs

(Extended Abstract)
  • Yi-Jun Chang
  • Hsu-Chun Yen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)

Abstract

We investigate the bend minimization problem with respect to a new drawing style called orthogonally convex drawing, which is orthogonal drawing with an additional requirement that each inner face is drawn as an orthogonally convex polygon. For the class of bi-connected plane graphs of maximum degree 3, we give a necessary and sufficient condition for the existence of a no-bend orthogonally convex drawing, which in turn, enables a linear time algorithm to check and construct such a drawing if one exists. We also develop a flow network formulation for bend-minimization in orthogonally convex drawings, yielding a polynomial time solution for the problem. An interesting application of our orthogonally convex drawing is to characterize internally triangulated plane graphs that admit floorplans using only orthogonally convex modules subject to certain boundary constraints.

Keywords

Bend minimization floorplan orthogonally convex drawing 

References

  1. 1.
    Alam, Md. J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S. G., Ueckert, T.: Computing Cartograms with Optimal Complexity. In: Symposium on Computational Geometry (SoCG 2012), pp. 21–30 (2012)Google Scholar
  2. 2.
    Cornelsen, S., Karrenbauer, A.: Accelerated Bend Minimization. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 111–122. Springer, Heidelberg (2011)Google Scholar
  3. 3.
    Di Battista, G., Liotta, G., Vargiu, F.: Spirality and Optimal Orthogonal Drawings. SIAM Journal on Computing 27(6), 1764–1811 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Duncan, C.A., Goodrich, M.T.: Planar Orthogonal and Polyline Drawing Algorithms. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, ch. 7. CRC Press (2013)Google Scholar
  5. 5.
    Garg, A., Tamassia, R.: On the Computational Complexity of Upward and Rectilinear Planarity Testing. SIAM Journal on Computing 31(2), 601–625 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kozminski, K., Kinnen, E.: Rectangular Dual of Planar Graphs. Networks 15, 145–157 (1985)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Miura, K., Haga, H., Nishizeki, T.: Inner Rectangular Drawings of Plane Graphs. International Journal of Computational Geometry and Applications 16(2-3), 249–270 (2006)MathSciNetMATHGoogle Scholar
  8. 8.
    Rahman, M. S., Egi, N., Nishizeki, T.: No-bend Orthogonal Drawings of Series-Parallel Graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 409–420. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Rahman, M.S., Nakano, S., Nishizeki, T.: A Linear Algorithm for Bend-Optimal Orthogonal Drawings of Triconnected Cubic Plane Graphs. Journal of Graph Algorithms and Applications 3, 31–62 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Rahman, M.S., Nishizeki, T.: Orthogonal Drawings of Plane Graphs Without Bends. Journal of Graph Algorithms and Applications 7, 335–362 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Sun, Y., Sarrafzadeh, M.: Floorplanning by Graph Dualization: L-shaped Modules. Algorithmica 10, 429–456 (1993)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Tamassia, R.: On Embedding a Graph in the Grid with the Minimum Number of Bends. SIAM Journal on Computing 16, 421–444 (1987)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Thomassen, C.: Plane Representations of Graphs. In: Bondy, J.A., Murty, U.S.R. (eds.) Progress in Graph Theory, pp. 43–69. Academic Press, Canada (1984)Google Scholar
  14. 14.
    Yeap, K., Sarrafzadeh, M.: Floor-Planning by Graph Dualization: 2-Concave Rectilinear Modules. SIAM Journal on Computing 22, 500–526 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Yi-Jun Chang
    • 1
  • Hsu-Chun Yen
    • 1
  1. 1.Dept. of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan, Republic of China

Personalised recommendations