Advertisement

Stub Bundling and Confluent Spirals for Geographic Networks

  • Arlind Nocaj
  • Ulrik Brandes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)

Abstract

Edge bundling is a technique to reduce clutter by routing parts of several edges along a shared path. In particular, it is used for visualization of geographic networks where vertices have fixed coordinates. Two main drawbacks of the common approach of bundling the interior of edges are that (i) tangents at endpoints deviate from the line connecting the two endpoints in an uncontrolled way and (ii) there is ambiguity as to which pairs of vertices are actually connected. Both severely reduce the interpretability of geographic network visualizations.

We therefore propose methods that bundle edges at their ends rather than their interior. This way, tangents at vertices point in the general direction of all neighbors of edges in the bundle, and ambiguity is avoided altogether. For undirected graphs our approach yields curves with no more than one turning point. For directed graphs we introduce a new drawing style, confluent spiral drawings, in which the direction of edges can be inferred from monotonically increasing curvature along each spiral segment.

Keywords

Control Point Directed Graph Outgoing Edge Logarithmic Spiral Spiral Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

978-3-319-03841-4_34_MOESM1_ESM.pdf (389 kb)
Electronic Supplementary Material(390 KB)

References

  1. 1.
    Baumgarten, C., Farin, G.: Approximation of logarithmic spirals. Computer Aided Geometric Design 14(6), 515–532 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benkert, M., Nöllenburg, M., Uno, T., Wolff, A.: Minimizing intra-edge crossings in wiring diagrams and public transportation maps. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 270–281. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Brandes, U., Shubina, G., Tamassia, R.: Improving angular resolution in visualizations of geographic networks. In: de Leeuw, W.C., van Liere, R. (eds.) VisSym 2000, pp. 23–32. Springer (2000)Google Scholar
  4. 4.
    Brandes, U., Wagner, D.: Using graph layout to visualize train interconnection data. Journal of Graph Algorithms and Applications 4(3), 135–155 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Buchin, K., Speckmann, B., Verbeek, K.: Angle-restricted steiner arborescences for flow map layout. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 250–259. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for graph visualization. IEEE Trans. on Visualization and Computer Graphics 14(6), 1277–1284 (2008)CrossRefGoogle Scholar
  7. 7.
    Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: Visualizing non-planar diagrams in a planar way. Journal of Graph Algorithms and Applications 9(1), 31–52 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ersoy, O., Hurter, C., Paulovich, F.V., Cantareiro, G., Telea, A.: Skeleton-based edge bundling for graph visualization. IEEE Trans. on Visualization and Computer Graphics 17(12), 2364–2373 (2011)CrossRefGoogle Scholar
  9. 9.
    Gansner, E.R., Hu, Y., North, S.C., Scheidegger, C.E.: Multilevel agglomerative edge bundling for visualizing large graphs. In: Proc. of the IEEE Pacific Visualization Symposium 2011, pp. 187–194. IEEE (2011)Google Scholar
  10. 10.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD 1984, pp. 47–57. ACM Press (1984)Google Scholar
  11. 11.
    Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Trans. on Visualization and Computer Graphics 12, 741–748 (2006)CrossRefGoogle Scholar
  12. 12.
    Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Computer Graphics Forum 28(3), 983–990 (2009)CrossRefGoogle Scholar
  13. 13.
    Hurter, C., Ersoy, O., Telea, A.: Smooth bundling of large streaming and sequence graphs. In: Proc. of the IEEE Pacific Visualization Symposium. IEEE (to appear, 2013)Google Scholar
  14. 14.
    Hurter, C., Ersoy, O., Telea, A.: Graph bundling by kernel density estimation. Computer Graphics Forum 31(3pt. 1), 865–874 (2012)CrossRefGoogle Scholar
  15. 15.
    Lambert, A., Bourqui, R., Auber, D.: 3d edge bundling for geographical data visualization. IEEE Trans. on Visualization and Computer Graphics, 329–335 (2010)Google Scholar
  16. 16.
    Lambert, A., Bourqui, R., Auber, D.: Winding roads: Routing edges into bundles. Computer Graphics Forum 29(3), 853–862 (2010)CrossRefGoogle Scholar
  17. 17.
    Newberry, F.J.: Edge concentration: A method for clustering directed graphs. SIGSOFT Software Engineering Notes 14(7), 76–85 (1989)CrossRefGoogle Scholar
  18. 18.
    Nguyen, Q.H., Eades, P., Hong, S.: On the faithfulness of graph visualizations. In: Proc. of the IEEE Pacific Visualization Symposium. IEEE (to appear, 2013)Google Scholar
  19. 19.
    Nguyen, Q., Hong, S.-H., Eades, P.: TGI-EB: A new framework for edge bundling integrating topology, geometry and importance. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 123–135. Springer, Heidelberg (2011)Google Scholar
  20. 20.
    Peng, D., Lu, N., Chen, W., Peng, Q.: Sideknot: Revealing relation patterns for graph visualization. In: Proc. of the IEEE Pacific Visualization Symposium 2012, pp. 65–72. IEEE (2012)Google Scholar
  21. 21.
    Phan, D., Xiao, L., Yeh, R., Hanrahan, P., Winograd, T.: Flow map layout. In: Proc. of IEEE Symposium of Information Visualization 2005, p. 29. IEEE (2005)Google Scholar
  22. 22.
    Pupyrev, S., Nachmanson, L., Bereg, S., Holroyd, A.E.: Edge routing with ordered bundles. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 136–147. Springer, Heidelberg (2011)Google Scholar
  23. 23.
    Pupyrev, S., Nachmanson, L., Kaufmann, M.: Improving layered graph layouts with edge bundling. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 329–340. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Selassie, D., Heller, B., Heer, J.: Divided edge bundling for directional network data. IEEE Trans. on Visualization and Computer Graphics 17 (2011)Google Scholar
  25. 25.
    Telea, A., Ersoy, O.: Image-based edge bundles: Simplified visualization of large graphs. Computer Graphics Forum 29(3), 843–852 (2010)CrossRefGoogle Scholar
  26. 26.
    Verbeek, K., Buchin, K., Speckmann, B.: Flow map layout via spiral trees. IEEE Trans. on Visualization and Computer Graphics 17(12), 2536–2544 (2011)CrossRefGoogle Scholar
  27. 27.
    Zinsmaier, M., Brandes, U., Deussen, O., Strobelt, H.: Interactive level-of-detail rendering of large graphs. IEEE Trans. on Visualization and Computer Graphics 18(12), 2486–2495 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Arlind Nocaj
    • 1
  • Ulrik Brandes
    • 1
  1. 1.Department of Computer & Information ScienceUniversity of KonstanzGermany

Personalised recommendations