Characterizing Planarity by the Splittable Deque

  • Christopher Auer
  • Franz J. Brandenburg
  • Andreas Gleißner
  • Kathrin Hanauer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)

Abstract

A graph layout describes the processing of a graph G by a data structure \(\mathcal{D}\), and the graph is called a \(\mathcal{D}\)-graph. The vertices of G are totally ordered in a linear layout and the edges are stored and organized in \(\mathcal{D}\). At each vertex, all edges to predecessors in the linear layout are removed and all edges to successors are inserted. There are intriguing relationships between well-known data structures and classes of planar graphs: The stack graphs are the outerplanar graphs [4], the queue graphs are the arched leveled-planar graphs [12], the 2-stack graphs are the subgraphs of planar graphs with a Hamilton cycle [4], and the deque graphs are the subgraphs of planar graphs with a Hamilton path [2]. All of these are proper subclasses of the planar graphs, even for maximal planar graphs.

We introduce splittable deques as a data structure to capture planarity. A splittable deque is a deque which can be split into sub-deques. The splittable deque provides a new insight into planarity testing by a game on switching trains. Here, we use it for a linear-time planarity test of a given rotation system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auer, C., Bachmaier, C., Brandenburg, F.J., Brunner, W., Gleißner, A.: Plane drawings of queue and deque graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 68–79. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Auer, C., Gleißner, A.: Characterizations of deque and queue graphs. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 35–46. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Auer, C., Gleißner, A., Hanauer, K., Vetter, S.: Testing planarity by switching trains. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 557–558. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Bernhart, F., Kainen, P.: The book thickness of a graph. J. Combin. Theory, Ser. B 27(3), 320–331 (1979)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: A layout problem with applications to VLSI design. SIAM J. Algebra. Discr. Meth. 8(1), 33–58 (1987)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Donafee, A., Maple, C.: Planarity testing for graphs represented by a rotation scheme. In: Banissi, E., Börner, K., Chen, C., Clapworthy, G., Maple, C., Lobben, A., Moore, C.J., Roberts, J.C., Ursyn, A., Zhang, J. (eds.) Proc. Seventh International Conference on Information Visualization, IV 2003, pp. 491–497. IEEE Computer Society, Washington, DC (2003)Google Scholar
  7. 7.
    Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor. Comput. Sci. 6(2), 339–358 (2004)MathSciNetMATHGoogle Scholar
  8. 8.
    Dujmović, V., Wood, D.R.: Stacks, queues and tracks: Layouts of graph subdivisions. Discrete Math. Theor. Comput. Sci. 7(1), 155–202 (2005)MathSciNetGoogle Scholar
  9. 9.
    de Fraysseix, H., Rosenstiehl, P.: A depth-first-search characterization of planarity. In: Graph Theory, Cambridge (1981); Ann. Discrete Math., vol. 13, pp. 75–80. North-Holland, Amsterdam (1982)Google Scholar
  10. 10.
    Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as mechanisms for laying out graphs. SIAM J. Discret. Math. 5(3), 398–412 (1992)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed acyclic graphs: Part I. SIAM J. Comput. 28(4), 1510–1539 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958 (1992)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kosaraju, S.R.: Real-time simulation of concatenable double-ended queues by double-ended queues (preliminary version). In: Proc. 11th Annual ACM Symposium on Theory of Computing, STOC 1979, pp. 346–351. ACM, New York (1979)Google Scholar
  14. 14.
    Rosenstiehl, P., Tarjan, R.E.: Gauss codes, planar hamiltonian graphs, and stack-sortable permutations. J. of Algorithms 5, 375–390 (1984)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Shih, W.K., Hsu, W.L.: A new planarity test. Theor. Comput. Sci. 223(1-2), 179–191 (1999)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Wood, D.R.: Queue layouts, tree-width, and three-dimensional graph drawing. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 348–359. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Yannakakis, M.: Four pages are necessary and sufficient for planar graphs. In: Proc. of the 18th Annual ACM Symposium on Theory of Computing, STOC 1986, pp. 104–108. ACM, New York (1986)Google Scholar
  18. 18.
    Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38(1), 36–67 (1989)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Christopher Auer
    • 1
  • Franz J. Brandenburg
    • 1
  • Andreas Gleißner
    • 1
  • Kathrin Hanauer
    • 1
  1. 1.University of PassauGermany

Personalised recommendations