Metro-Line Crossing Minimization: Hardness, Approximations, and Tractable Cases

  • Martin Fink
  • Sergey Pupyrev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)


Crossing minimization is one of the central problems in graph drawing. Recently, there has been an increased interest in the problem of minimizing crossings between paths in drawings of graphs. This is the metro-line crossing minimization problem (MLCM): Given an embedded graph and a set L of simple paths, called lines, order the lines on each edge so that the total number of crossings is minimized. So far, the complexity of MLCM has been an open problem. In contrast, the problem variant in which line ends must be placed in outermost position on their edges (MLCM-P) is known to be NP-hard.

Our main results answer two open questions: (i) We show that MLCM is NP-hard. (ii) We give an \(O(\sqrt{\log |L|})\)-approximation algorithm for MLCM-P.


Bipartite Graph Truth Assignment Underlying Network Embed Graph Periphery Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agarwal, A., Charikar, M., Makarychev, K., Makarychev, Y.: \(O(\sqrt{\log n})\) approximation algorithms for min UnCut, min 2CNF deletion, and directed cut problems. In: STOC 2005, pp. 573–581. ACM, New York (2005)Google Scholar
  2. 2.
    Argyriou, E.N., Bekos, M.A., Kaufmann, M., Symvonis, A.: On metro-line crossing minimization. Journal of Graph Algorithms and Applications 14(1), 75–96 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Asquith, M., Gudmundsson, J., Merrick, D.: An ILP for the metro-line crossing problem. In: Harland, J., Manyem, P. (eds.) CATS 2008. CRPIT, vol. 77, pp. 49–56. Australian Computer Society (2008)Google Scholar
  4. 4.
    Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Line crossing minimization on metro maps. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 231–242. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Benkert, M., Nöllenburg, M., Uno, T., Wolff, A.: Minimizing intra-edge crossings in wiring diagrams and public transportation maps. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 270–281. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Fink, M., Pupyrev, S.: Metro-line crossing minimization: Hardness, approximations, and tractable cases. ArXiv e-print abs/1306.2079 (2013),
  7. 7.
    Fink, M., Pupyrev, S.: Ordering metro lines by block crossings. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 397–408. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Groeneveld, P.: Wire ordering for detailed routing. IEEE Des. Test 6(6), 6–17 (1989)CrossRefGoogle Scholar
  9. 9.
    Grötschel, M., Pulleyblank, W.: Weakly bipartite graphs and the Max-Cut problem. Operations Research Letters 1(1), 23–27 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Marek-Sadowska, M., Sarrafzadeh, M.: The crossing distribution problem. IEEE Transactions on CAD of Integrated Circuits and Systems 14(4), 423–433 (1995)CrossRefGoogle Scholar
  11. 11.
    Nöllenburg, M.: Network Visualization: Algorithms, Applications, and Complexity. Ph.D. thesis, Fakultät für Informatik, Universität Karlsruhe (TH) (2009)Google Scholar
  12. 12.
    Nöllenburg, M.: An improved algorithm for the metro-line crossing minimization problem. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 381–392. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Okamoto, Y., Tatsu, Y., Uno, Y.: Exact and fixed-parameter algorithms for metro-line crossing minimization problems. ArXiv e-print abs/1306.3538 (2013)Google Scholar
  14. 14.
    Pupyrev, S., Nachmanson, L., Bereg, S., Holroyd, A.E.: Edge routing with ordered bundles. In: van Kreveld, M.J., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 136–147. Springer, Heidelberg (2012)Google Scholar
  15. 15.
    Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. Journal of Computer and System Sciences 75(8), 435–450 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Martin Fink
    • 1
  • Sergey Pupyrev
    • 2
    • 3
  1. 1.Lehrstuhl für Informatik IUniversität WürzburgGermany
  2. 2.Department of Computer ScienceUniversity of ArizonaUSA
  3. 3.Institute of Mathematics and Computer ScienceUral Federal UniversityRussia

Personalised recommendations