COAST: A Convex Optimization Approach to Stress-Based Embedding

  • Emden R. Gansner
  • Yifan Hu
  • Shankar Krishnan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)

Abstract

Visualizing graphs using virtual physical models is probably the most heavily used technique for drawing graphs in practice. There are many algorithms that are efficient and produce high-quality layouts. If one requires that the layout also respect a given set of non-uniform edge lengths, however, force-based approaches become problematic while energy-based layouts become intractable. In this paper, we propose a reformulation of the stress function into a two-part convex objective function to which we can apply semi-definite programming (SDP). We avoid the high computational cost associated with SDP by a novel, compact re-parameterization of the objective function using the eigenvectors of the graph Laplacian. This sparse representation makes our approach scalable. We provide experimental results to show that this method scales well and produces reasonable layouts while dealing with the edge length constraints.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 42–53. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Brandes, U., Pich, C.: An experimental study on distance-based graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 218–229. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Chen, L., Buja, A.: Local multidimensional scaling for nonlinear dimension reduction, graph drawing, and proximity analysis. J. Amer. Statistical Assoc. 104, 209–219 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chung, F.R.K.: Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, No. 92). American Mathematical Society, Providene (1996)Google Scholar
  5. 5.
    Davis, T.A., Hu, Y.: U. of Florida Sparse Matrix Collection. ACM Transaction on Mathematical Software 38, 1–18 (2011), http://www.cise.ufl.edu/research/sparse/matrices/ MathSciNetGoogle Scholar
  6. 6.
    Drineas, P., Frieze, A.M., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the singular value decomposition. Machine Learning 56, 9–33 (2004)CrossRefMATHGoogle Scholar
  7. 7.
    Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
  8. 8.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force directed placement. Software - Practice and Experience 21, 1129–1164 (1991)CrossRefGoogle Scholar
  9. 9.
    Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-directed layouts of large graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 211–221. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Gansner, E.R., Hu, Y., Krishnan, S.: COAST: A convex optimization approach to stress-based embedding (2013), http://arxiv.org/abs/1308.5218
  12. 12.
    Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout. IEEE Trans. Vis. Comput. Graph. 19(6), 927–940 (2013)CrossRefGoogle Scholar
  13. 13.
    Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Hu, Y.: Efficient and high quality force-directed graph drawing. Mathematica Journal 10, 37–71 (2005)Google Scholar
  15. 15.
    Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1), 1–13 (1977)CrossRefMATHGoogle Scholar
  16. 16.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31, 7–15 (1989)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Khoury, M., Hu, Y., Krishnan, S., Scheidegger, C.: Drawing large graphs by low-rank stress majorization. Computer Graphics Forum 31(3), 975–984 (2012)CrossRefGoogle Scholar
  18. 18.
    Koren, Y., Çivril, A.: The binary stress model for graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 193–205. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Kruskal, J.B.: Multidimensioal scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kruskal, J.B., Seery, J.B.: Designing network diagrams. In: Proc. First General Conference on Social Graphics, pp. 22–50. U. S. Department of the Census, Washington, D.C. (July 1980), Bell Laboratories Technical Report No. 49Google Scholar
  21. 21.
    Noack, A.: Energy models for graph clustering. J. Graph Algorithms and Applications 11(2), 453–480 (2007)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Noack, A.: Modularity clustering is force-directed layout. Physical Review E 79, 026102 (2009)Google Scholar
  23. 23.
    Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical Computer Science 312(1), 47–74 (2004)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Advances in Neural Information Processing Systems 15, pp. 721–728. MIT Press, Cambridge (2003)Google Scholar
  25. 25.
    Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Mathematical Programming 95(2), 189–217 (2003)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Walshaw, C.: A multilevel algorithm for force-directed graph drawing. J. Graph Algorithms and Applications 7, 253–285 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Emden R. Gansner
    • 1
  • Yifan Hu
    • 1
  • Shankar Krishnan
    • 1
  1. 1.AT&T Labs - ResearchFlorham ParkUSA

Personalised recommendations