Streamed Graph Drawing and the File Maintenance Problem

  • Michael T. Goodrich
  • Paweł Pszona
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)

Abstract

In streamed graph drawing, a planar graph, G, is given incrementally as a data stream and a straight-line drawing of G must be updated after each new edge is released. To preserve the mental map, changes to the drawing should be minimized after each update, and Binucci et al. show that exponential area is necessary for a number of streamed graph drawings for trees if edges are not allowed to move at all. We show that a number of streamed graph drawings can, in fact, be done with polynomial area, including planar streamed graph drawings of trees, tree-maps, and outerplanar graphs, if we allow for a small number of coordinate movements after each update. Our algorithms involve an interesting connection to a classic algorithmic problem—the file maintenance problem—and we also give new algorithms for this problem in a framework where bulk memory moves are allowed.

References

  1. 1.
    Archambault, D., Purchase, H.C.: Mental map preservation helps user orientation in dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 475–486. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified algorithms for maintaining order in a list. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Binucci, C., Brandes, U., Battista, G.D., Didimo, W., Gaertler, M., Palladino, P., Patrignani, M., Symvonis, A., Zweig, K.: Drawing trees in a streaming model. Information Processing Letters 112(11), 418–422 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Binucci, C., Brandes, U., Di Battista, G., Didimo, W., Gaertler, M., Palladino, P., Patrignani, M., Symvonis, A., Zweig, K.: Drawing trees in a streaming model. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 292–303. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Dietz, P., Sleator, D.: Two algorithms for maintaining order in a list. In: 19th ACM Symp. on Theory of Computing (STOC), pp. 365–372 (1987)Google Scholar
  6. 6.
    Eades, P., Lai, W., Misue, K., Sugiyama, K.: Preserving the mental map of a diagram. In: Proceedings of Compugraphics, pp. 24–33 (1991)Google Scholar
  7. 7.
    Goodrich, M.T., Pszona, P.: Cole’s parametric search technique made practical. CoRR (arXiv ePrint), abs/1308.6711 (2013)Google Scholar
  8. 8.
    Kopelowitz, T.: On-line indexing for general alphabets via predecessor queries on subsets of an ordered list. In: FOCS, pp. 283–292. IEEE Computer Society (2012)Google Scholar
  9. 9.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. Journal of Visual Languages & Computing 6(2), 183–210 (1995)CrossRefGoogle Scholar
  10. 10.
    Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans. Graph. 11(1), 92–99 (1992)CrossRefMATHGoogle Scholar
  11. 11.
    Tamassia, R.: Handbook of Graph Drawing and Visualization. Discrete Mathematics and Its Applications. Chapman & Hall/CRC (2007)Google Scholar
  12. 12.
    Willard, D.E.: Good worst-case algorithms for inserting and deleting records in dense sequential files. In: ACM SIGMOD, pp. 251–260 (1986)Google Scholar
  13. 13.
    Yantis, S.: Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology 24(3), 295–340 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Michael T. Goodrich
    • 1
  • Paweł Pszona
    • 1
  1. 1.Dept.of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations