Advertisement

Superpatterns and Universal Point Sets

  • Michael J. Bannister
  • Zhanpeng Cheng
  • William E. Devanny
  • David Eppstein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)

Abstract

An old open problem in graph drawing asks for the size of a universal point set, a set of points that can be used as vertices for straight-line drawings of all n-vertex planar graphs. We connect this problem to the theory of permutation patterns, where another open problem concerns the size of superpatterns, permutations that contain all patterns of a given size. We generalize superpatterns to classes of permutations determined by forbidden patterns, and we construct superpatterns of size n 2/4 + Θ(n) for the 213-avoiding permutations, half the size of known superpatterns for unconstrained permutations. We use our superpatterns to construct universal point sets of size n 2/4 − Θ(n), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size O(nlog O(1) n), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.

Keywords

Planar Graph Canonical Representation Outer Face Clockwise Order Planar Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990); Originally presented at STOC 1988MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chrobak, M., Payne, T.: A linear-time algorithm for drawing a planar graph on a grid. Inform. Proc. Lett. 54(4), 241–246 (1995)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proc. 1st ACM–SIAM Symp. on Discrete Algorithms, pp. 138–148 (1990)Google Scholar
  4. 4.
    Brandenburg, F.J.: Drawing planar graphs on \(\tfrac{8}{9} n^2\) area. In: Proc. Int. Conf. Topological and Geometric Graph Theory. Electronic Notes in Discrete Mathematics, vol. 31, pp. 37–40. Elsevier (2008)Google Scholar
  5. 5.
    Dolev, D., Leighton, T., Trickey, H.: Planar embedding of planar graphs. Advances in Computing Research 2, 147–161 (1984)Google Scholar
  6. 6.
    Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inform. Proc. Lett. 92(2), 95–98 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Mondal, D.: Embedding a Planar Graph on a Given Point Set. Master’s thesis, Dept. of Computer Science, U. of Manitoba (2012)Google Scholar
  8. 8.
    Demaine, E., O’Rourke, J.: Smallest Universal Set of Points for Planar Graphs (Problem 45). In: Demaine, E., Mitchell, J.S.B., O’Rourke, J. (eds.) The Open Problems Project (2002-2012)Google Scholar
  9. 9.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified positions. Amer. Math. Monthly 98(2), 165–166 (1991)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Angelini, P., Di Battista, G., Kaufmann, M., Mchedlidze, T., Roselli, V., Squarcella, C.: Small point sets for simply-nested planar graphs. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 75–85. Springer, Heidelberg (2011)Google Scholar
  11. 11.
    Fulek, R., Tóth, C.D.: Universal point sets for planar three-trees. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 341–352. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Eppstein, D.: Drawing arrangement graphs in small grids, or how to play Planarity. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 436–447. Springer, Heidelberg (2013)Google Scholar
  13. 13.
    Bereg, S., Holroyd, A.E., Nachmanson, L., Pupyrev, S.: Drawing permutations with few corners. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 484–495. Springer, Heidelberg (2013)Google Scholar
  14. 14.
    Arratia, R.: On the Stanley-Wilf conjecture for the number of permutations avoiding a given pattern. Elect. J. Comb. 6, N1 (1999)Google Scholar
  15. 15.
    Eriksson, H., Eriksson, K., Linusson, S., Wästlund, J.: Dense packing of patterns in a permutation. Ann. Comb. 11(3-4), 459–470 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Miller, A.: Asymptotic bounds for permutations containing many different patterns. J. Comb. Theory A 116(1), 92–108 (2009)CrossRefMATHGoogle Scholar
  17. 17.
    Marcus, A., Tardos, G.: Excluded permutation matrices and the Stanley–Wilf conjecture. J. Comb. Theory A 107(1), 153–160 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Rotem, D.: Stack sortable permutations. Discrete Math. 33(2), 185–196 (1981)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Knuth, D.: Vol. 1: Fundamental Algorithms. In: The Art of Computer Programming. Addison-Wesley, Reading (1968)Google Scholar
  20. 20.
    Dietz, P.F.: Maintaining order in a linked list. In: Proc. 15th ACM Symp. on Theory of Computing, pp. 122–127 (1982)Google Scholar
  21. 21.
    Bukh, B., Matoušek, J., Nivasch, G.: Lower bounds for weak epsilon-nets and stair-convexity. Israel J. Math. 182, 199–208 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: 4.7 Dominance drawings. In: Graph Drawing: Algorithms for the Visualization of Graphs, pp. 112–127. Prentice-Hall (1999)Google Scholar
  23. 23.
    Eppstein, D., Simons, J.A.: Confluent Hasse diagrams. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 2–13. Springer, Heidelberg (2011)Google Scholar
  24. 24.
    Bannister, M.J., Devanny, W.E., Eppstein, D.: Small superpatterns for dominance drawing (manuscript 2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Michael J. Bannister
    • 1
  • Zhanpeng Cheng
    • 1
  • William E. Devanny
    • 1
  • David Eppstein
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations