Exploiting Air-Pressure to Map Floorplans on Point Sets

  • Stefan Felsner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)


We prove a conjecture of Ackerman, Barequet and Pinter. Every floorplan with n segments can be embedded on every set of n points in generic position. The construction makes use of area universal floorplans also known as area universal rectangular layouts.

The notion of area used in our context depends on a nonuniform density function. We, therefore, have to generalize the theory of area universal floorplans to this situation. The method is then used to prove a result about accommodating points in floorplans that is slightly more general than the conjecture of Ackerman et al.


Planar Graph Coordinate Vector Vertical Segment Transversal Structure Clockwise Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ackerman, E., Barequet, G., Pinter, R.Y.: On the number of rectangulations of a planar point set. J. Combin. Theory Ser. A 113, 1072–1091 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Asinowski, A., Barequet, G., Bousquet-Mélou, M., Mansour, T., Pinter, R.: Orders induced by segments in floorplan partitions and (2-14-3,3-41-2)-avoiding permutations (2010) (submitted), arXiv:1011.1889Google Scholar
  3. 3.
    Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular layouts and contact graphs. ACM Trans. Alg. 4, 28 pages (2008)Google Scholar
  4. 4.
    de Fraysseix, H., Ossona de Mendez, P.: On topological aspects of orientation. Discr. Math. 229, 57–72 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal and constrained rectangular layouts. SIAM J. Computing 41, 537–564 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 213–248. Springer, New-York (2012)Google Scholar
  7. 7.
    Felsner, S., Fusy, É., Noy, M., Orden, D.: Bijections for Baxter families and related objects. Journal of Comb. Theory A 18, 993–1020 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Felsner, S., Huemer, C., Kappes, S., Orden, D.: Binary labelings for plane quadrangulations and their relatives. Discr. Math. & Theor. Comp. Sci. 12, 115–138 (2010)MathSciNetGoogle Scholar
  9. 9.
    Fusy, É.: Combinatoire des cartes planaires et applications algorithmiques. PhD thesis, LIX Ecole Polytechnique (2007),
  10. 10.
    Fusy, É.: Transversal structures on triangulations: A combinatorial study and straight-line drawings. Discr. Math. 309, 1870–1894 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Izumi, T., Takahashi, A., Kajitani, Y.: Air-pressure model and fast algorithms for zero-wasted-area layout of general floorplan. IEICE Trans. Fundam. Electron., Commun. and Comp. Sci. E81-A, 857–865 (1998)Google Scholar
  12. 12.
    Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theor. Comput. Sci. 172, 175–193 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Schrenzenmaier, H.: Ein Luftdruckparadigma zur Optimierung von Zerlegungen. Bachelor’s Thesis, TU Berlin (2013)Google Scholar
  14. 14.
    Wimer, S., Koren, I., Cederbaum, I.: Floorplans, planar graphs, and layouts. IEEE Transactions on Circuits and Systems 35, 267–278 (1988)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Stefan Felsner
    • 1
  1. 1.Institut für MathematikTechnische Universität BerlinGermany

Personalised recommendations