Block Additivity of ℤ2-Embeddings

  • Marcus Schaefer
  • Daniel Štefankovič
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)

Abstract

We study embeddings of graphs in surfaces up to ℤ2-homology. We introduce a notion of genus mod 2 and show that some basic results, most noteworthy block additivity, hold for ℤ2-genus. This has consequences for (potential) Hanani-Tutte theorems on arbitrary surfaces.

References

  1. 1.
    Sarkaria, K.S.: A one-dimensional Whitney trick and Kuratowski’s graph planarity criterion. Israel J. Math. 73(1), 79–89 (1991)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chojnacki (Haim Hanani), C.: Über wesentlich unplättbare Kurven im drei-dimensionalen Raume. Fundamenta Mathematicae 23, 135–142 (1934)Google Scholar
  3. 3.
    Pelsmajer, M.J., Schaefer, M., Stasi, D.: Strong Hanani–Tutte on the projective plane. SIAM Journal on Discrete Mathematics 23(3), 1317–1323 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Mohar, B., Thomassen, C.: Graphs on surfaces. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2001)MATHGoogle Scholar
  5. 5.
    Levow, R.B.: On Tutte’s algebraic approach to the theory of crossing numbers. In: Hoffman, F., Levow, R.B., Thomas, R.S.D. (eds.) Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton, Fla., Florida Atlantic University, pp. 315–314 (1972)Google Scholar
  6. 6.
    Stillwell, J.: Classical topology and combinatorial group theory. Second edn, 2nd edn. Graduate Texts in Mathematics, vol. 72. Springer, New York (1993)CrossRefGoogle Scholar
  7. 7.
    de Longueville, M.: A course in topological combinatorics. In: Universitext, Springer, New York (2013)Google Scholar
  8. 8.
    Babai, L., Frankl, P.: Linear algebra methods in combinatorics with applications to geometry and computer science. Department of Computer Science, The University of Chicago (1992)Google Scholar
  9. 9.
    Thomassen, C.: The graph genus problem is NP-complete. J. Algorithms 10(4), 568–576 (1989)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J. Discrete Math. 12(1), 6–26 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Marcus Schaefer
    • 1
  • Daniel Štefankovič
    • 2
  1. 1.School of ComputingDePaul UniversityChicagoUSA
  2. 2.Computer Science DepartmentUniversity of RochesterRochesterUSA

Personalised recommendations