Extending Partial Representations of Circle Graphs

  • Steven Chaplick
  • Radoslav Fulek
  • Pavel Klavík
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)


The partial representation extension problem is a recently introduced generalization of the recognition problem. A circle graph is an intersection graph of chords of a circle. We study the partial representation extension problem for circle graphs, where the input consists of a graph G and a partial representation \(\mathcal{R'}\) giving some pre-drawn chords that represent an induced subgraph of G. The question is whether one can extend \(\mathcal{R'}\) to a representation \(\mathcal{R}\) of the entire G, i.e., whether one can draw the remaining chords into a partially pre-drawn representation.

Our main result is a polynomial-time algorithm for partial representation extension of circle graphs. To show this, we describe the structure of all representation a circle graph based on split decomposition. This can be of an independent interest.


Intersection Graph Interval Graph Chordal Graph Prime Graph Circle Graph 


  1. 1.
    Angelini, P., Battista, G.D., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. In: SODA 2010, pp. 202–221 (2010)Google Scholar
  2. 2.
    Balko, M., Klavík, P., Otachi, Y.: Bounded representations of interval and proper interval graphs. In: ISAAC (to appear, 2013)Google Scholar
  3. 3.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. In: SODA 2013, pp. 1030–1043 (2013)Google Scholar
  4. 4.
    Bouchet, A.: Reducing prime graphs and recognizing circle graphs. Combinatorica 7(3), 243–254 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bouchet, A.: Unimodularity and circle graphs. Discrete Mathematics 66(1-2), 203–208 (1987)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Annals of Mathematics 164, 51–229 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Courcelle, B.: Circle graphs and monadic second-order logic. J. Applied Logic 6(3), 416–442 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cunningham, W.: Decomposition of directed graphs. SIAM J. Alg. and Disc. Methods 3, 214–228 (1982)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition. Journal of Algorithms 36(2), 205–240 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    de Fraysseix, H.: Local complementation and interlacement graphs. Discrete Mathematics 33(1), 29–35 (1981)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    de Fraysseix, H., de Mendez, P.O.: On a characterization of gauss codes. Discrete & Computational Geometry 22(2), 287–295 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Even, S., Itai, A.: Queues, stacks, and graphs. In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computation, pp. 71–76 (1971)Google Scholar
  13. 13.
    Gabor, C.P., Supowit, K.J., Hsu, W.: Recognizing circle graphs in polynomial time. J. ACM 36(3), 435–473 (1989)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gioan, E., Paul, C., Tedder, M., Corneil, D.: Practical and efficient circle graph recognition. Algorithmica, 1–30 (2013)Google Scholar
  15. 15.
    Jampani, K.R., Lubiw, A.: The simultaneous representation problem for chordal, comparability and permutation graphs. Journal of Graph Algortihms and Applications 16(2), 283–315 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B.: Extending partial representations of function graphs and permutation graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 671–682. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Klavík, P., Kratochvíl, J., Otachi, Y., Rutter, I., Saitoh, T., Saumell, M., Vyskočil, T.: Extending partial representations of proper and unit interval graphs (in preparation, 2013)Google Scholar
  18. 18.
    Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T.: Extending partial representations of subclasses of chordal graphs. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 444–454. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Klavík, P., Kratochvíl, J., Vyskočil, T.: Extending partial representations of interval graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 276–285. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Kostochka, A., Kratochvíl, J.: Covering and coloring polygon-circle graphs. Discrete Mathematics 163(1-3), 299–305 (1997)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Naji, W.: Graphes de Cordes: Une Caracterisation et ses Applications. PhD thesis, l’Université Scientifique et Médicale de Grenoble (1985)Google Scholar
  22. 22.
    Oum, S.: Rank-width and vertex-minors. J. Comb. Theory, Ser. B 95(1), 79–100 (2005)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Patrignani, M.: On extending a partial straight-line drawing. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 380–385. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Spinrad, J.P.: Recognition of circle graphs. J. of Algorithms 16(2), 264–282 (1994)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Spinrad, J.P.: Efficient Graph Representations. Field Institute Monographs (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Steven Chaplick
    • 1
  • Radoslav Fulek
    • 1
  • Pavel Klavík
    • 2
  1. 1.Department of Applied Mathematics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Computer Science Institute, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations