Recognizing Outer 1-Planar Graphs in Linear Time

  • Christopher Auer
  • Christian Bachmaier
  • Franz J. Brandenburg
  • Andreas Gleißner
  • Kathrin Hanauer
  • Daniel Neuwirth
  • Josef Reislhuber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)

Abstract

A graph is outer 1-planar (o1p) if it can be drawn in the plane such that all vertices are on the outer face and each edge is crossed at most once. o1p graphs generalize outerplanar graphs, which can be recognized in linear time and specialize 1-planar graphs, whose recognition is \(\mathcal{NP}\)-hard.

Our main result is a linear-time algorithm that first tests whether a graph G is o1p, and then computes an embedding. Moreover, the algorithm can augment G to a maximal o1p graph. If G is not o1p, then it includes one of six minors (see Fig. 3), which are also detected by the recognition algorithm. Hence, the algorithm returns a positive or negative witness for o1p.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line drawings of 3-connected 1-planar graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 83–94. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: On 1-planar graphs with rotation systems. Tech. Rep. MIP 1207, University of Passau (2012)Google Scholar
  3. 3.
    Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 97–108. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.: On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 327–338. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. Tech. Rep. arXiv:1203.5944 (cs.CG), Computing Research Repository (CoRR) (March 2012)Google Scholar
  6. 6.
    Dehkordi, H.R., Eades, P.: Every outer-1-plane graph has a right angle crossing drawing. Internat. J. Comput. Geom. Appl. 22(6), 543–558 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Eades, P., Hong, S.H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: Testing maximal 1-planarity of graphs with a rotation system in linear time. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 339–345. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 148–153. Springer, Heidelberg (2011)Google Scholar
  10. 10.
    Eggleton, R.B.: Rectilinear drawings of graphs. Utilitas Math. 29, 149–172 (1986)MathSciNetMATHGoogle Scholar
  11. 11.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Hliněný, P.: Crossing number is hard for cubic graphs. J. Combin. Theory, Ser. B 96(4), 455–471 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 335–346. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Hong, S.H., Eades, P., Naoki, K., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 71–82. Springer, Heidelberg (2013)Google Scholar
  15. 15.
    Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersion and hardness of 1-planarity testing. J. Graph Theor. 72, 30–71 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Inform. Process. Lett. 9(5), 229–232 (1979)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. aus dem Math. Seminar der Univ. Hamburg 29, 107–117 (1965)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theor. 12(3), 335–341 (1988)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Christopher Auer
    • 1
  • Christian Bachmaier
    • 1
  • Franz J. Brandenburg
    • 1
  • Andreas Gleißner
    • 1
  • Kathrin Hanauer
    • 1
  • Daniel Neuwirth
    • 1
  • Josef Reislhuber
    • 1
  1. 1.University of PassauPassauGermany

Personalised recommendations