Recognizing Outer 1-Planar Graphs in Linear Time

  • Christopher Auer
  • Christian Bachmaier
  • Franz J. Brandenburg
  • Andreas Gleißner
  • Kathrin Hanauer
  • Daniel Neuwirth
  • Josef Reislhuber
Conference paper

DOI: 10.1007/978-3-319-03841-4_10

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)
Cite this paper as:
Auer C. et al. (2013) Recognizing Outer 1-Planar Graphs in Linear Time. In: Wismath S., Wolff A. (eds) Graph Drawing. GD 2013. Lecture Notes in Computer Science, vol 8242. Springer, Cham

Abstract

A graph is outer 1-planar (o1p) if it can be drawn in the plane such that all vertices are on the outer face and each edge is crossed at most once. o1p graphs generalize outerplanar graphs, which can be recognized in linear time and specialize 1-planar graphs, whose recognition is \(\mathcal{NP}\)-hard.

Our main result is a linear-time algorithm that first tests whether a graph G is o1p, and then computes an embedding. Moreover, the algorithm can augment G to a maximal o1p graph. If G is not o1p, then it includes one of six minors (see Fig. 3), which are also detected by the recognition algorithm. Hence, the algorithm returns a positive or negative witness for o1p.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Christopher Auer
    • 1
  • Christian Bachmaier
    • 1
  • Franz J. Brandenburg
    • 1
  • Andreas Gleißner
    • 1
  • Kathrin Hanauer
    • 1
  • Daniel Neuwirth
    • 1
  • Josef Reislhuber
    • 1
  1. 1.University of PassauPassauGermany

Personalised recommendations