HANDS.DVI: A Device-Independent Programming and Control Framework for Robotic Hands

  • Gionata Salvietti
  • Guido Gioioso
  • Monica Malvezzi
  • Domenico Prattichizzo
  • Alessandro Serio
  • Edoardo Farnioli
  • Marco Gabiccini
  • Antonio Bicchi
  • Ioannis Sarakoglou
  • Nikos Tsagarakis
  • Darwin Caldwell
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 94)

Abstract

The scientific goal of HANDS.DVI consists of developing a common framework to programming robotic hands independently from their kinematics, mechanical construction, and sensor equipment complexity. Recent results on the organization of the human hand in grasping and manipulation are the inspiration for this experiment. The reduced set of parameters that we effectively use to control our hands is known in the literature as the set of synergies. The synergistic organization of the human hand is the theoretical foundation of the innovative approach to design a unified framework for robotic hands control. Theoretical tools have been studied to design a suitable mapping function of the control action (decomposed in its elemental action) from a human hand model domain onto the articulated robotic hand co-domain. The developed control framework has been applied on an experimental set up consisting of two robotic hands with dissimilar kinematics grasping an object instrumented with force sensors.

Keywords

Robotic hand grasping object-based mapping human hand synergies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Santello, M., Flanders, M., Soechting, J.: Postural hand synergies for tool use. The Journal of Neuroscience 18, 10105–10115 (1998)Google Scholar
  2. 2.
    Santello, M., Soechting, J.F.: Force synergies for multifingered grasping. Experimental Brain Research 133, 457–467 (2000)CrossRefGoogle Scholar
  3. 3.
    Lin, J., Wu, T.: Modeling the Constraints of Human Hand Motion. Urbana 51(61), 801 (2000)Google Scholar
  4. 4.
    Linscheid, R., An, K., Gross, R.: Quantitative analysis of the intrinsic muscles of the hand. Clinical Anatomy 4(4), 265–284 (1991)CrossRefGoogle Scholar
  5. 5.
    Kim, K., Youm, Y., Chung, W.: Human kinematic factor for haptic manipulation: The wrist to thumb. In: Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS 2002, pp. 319–326 (2002)Google Scholar
  6. 6.
    Youm, Y., Holden, M., Dohrmann, K.: Finger ray ratio study. Tech. Rep. (1977)Google Scholar
  7. 7.
    Chao, E.: Biomechanics of the hand: a basic research study. World Scientific Publishing Company (1989)Google Scholar
  8. 8.
    Gioioso, G., Salvietti, G., Malvezzi, M., Prattichizzo, D.: An object-based approach to map human hand synergies onto robotic hands with dissimilar kinematics. In: Robotics: Science and Systems VIII. The MIT Press, Sidney (2012)Google Scholar
  9. 9.
    Gioioso, G., Salvietti, G., Malvezzi, M., Prattichizzo, D.: Mapping synergies from human to robotic hands with dissimilar kinematics: an approach in the object domain. IEEE Trans. on Robotics (2013)Google Scholar
  10. 10.
    Ciocarlie, M., Goldfeder, C., Allen, P.: Dimensionality reduction for hand-independent dexterous robotic grasping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 3270–3275 (2007)Google Scholar
  11. 11.
    Peer, A., Einenkel, S., Buss, M.: Multi-fingered telemanipulation - mapping of a human hand to a three finger gripper. In: The 17th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2008, pp. 465–470 (August 2008)Google Scholar
  12. 12.
    Butterfass, J., Grebenstein, M., Liu, H., Hirzinger, G.: DLR-hand II: next generation of a dextrous robot hand. In: Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation, vol. 1, pp. 109–114 (2001)Google Scholar
  13. 13.
    Artoolkit library for Augmented Reality, http://www.hitl.washington.edu/artoolkit/
  14. 14.
    Kato, H., Billinghurst, M.: Marker Tracking and HMD Calibration for a Video-Based Augmented Reality Conferencing System. In: Proc. IEEE ACM Int. Workshop on Augmented Reality (1999)Google Scholar
  15. 15.
    Ma, Y., Soatto, S., Kosecká, J., Sastry, S.: An Invitation to 3-D Vision: From Images to Geometric Models. Interdisciplinary Applied Mathematics. Springer (2003)Google Scholar
  16. 16.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)Google Scholar
  17. 17.
    Gabiccini, M., Bicchi, A., Prattichizzo, D., Malvezzi, M.: On the role of hand synergies in the optimal choice of grasping forces. Autonomous Robots 31, 235–252 (2011)CrossRefGoogle Scholar
  18. 18.
    Bicchi, A., Salisbury, J.K., Brock, D.L.: Contact sensing from force measurements. The International Journal of Robotics Research 12(3), 249–262 (1993)CrossRefGoogle Scholar
  19. 19.
    Bicchi, A.: On the closure properties of robotic grasping. The Int. J. of Robotics Research 14(4), 319–334 (1995)CrossRefGoogle Scholar
  20. 20.
    Malvezzi, M., Gioioso, G., Salvietti, G., Prattichizzo, D., Bicchi, A.: Syngrasp: a matlab toolbox for grasp analysis of human and robotic hands. In: Proc. IEEE Int. Conf. on Robotics and Automation (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gionata Salvietti
    • 1
  • Guido Gioioso
    • 1
  • Monica Malvezzi
    • 1
  • Domenico Prattichizzo
    • 1
  • Alessandro Serio
    • 2
  • Edoardo Farnioli
    • 2
  • Marco Gabiccini
    • 2
  • Antonio Bicchi
    • 2
  • Ioannis Sarakoglou
    • 3
  • Nikos Tsagarakis
    • 3
  • Darwin Caldwell
    • 3
  1. 1.Dept. of Information Engineering and MathematicsUniversity of SienaSienaItaly
  2. 2.Centro E. PiaggioUniversity of PisaPisaItaly
  3. 3.Dept. of Advanced RoboticsIstituto Italiano di TecnologiaGenovaItaly

Personalised recommendations