Approximation Algorithms for the Maximum Multiple RNA Interaction Problem

  • Weitian Tong
  • Randy Goebel
  • Tian Liu
  • Guohui Lin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8287)

Abstract

RNA interactions are fundamental in many cellular processes, which can involve two or more RNA molecules. Multiple RNA interactions are also believed to be much more complex than pairwise interactions. Recently, multiple RNA interaction prediction has been formulated as a maximization problem. Here we extensively examine this optimization problem under several biologically meaningful interaction models. We present a polynomial time algorithm for the problem when the order of interacting RNAs is known and pseudoknot interactions are allowed; for the general problem without an assumed RNA order, we prove the NP-hardness for both variants (allowing and disallowing pseudoknot interactions), and present a constant ratio approximation algorithm for each of them.

Keywords

RNA interaction maximum weight b-matching acyclic 2-matching approximation algorithm worst case performance ratio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, S.A., Mneimneh, S., Greenbaum, N.L.: A combinatorial approach for multiple RNA interaction: Formulations, approximations, and heuristics. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 421–433. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Alkan, C., et al.: RNA-RNA interaction prediction and antisense RNA target search. Journal of Computational Biology 13, 267–282 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chen, Z.-Z., Wang, L.: An improved approximation algorithm for the Bandpass-2 problem. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 188–199. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Chitsaz, H., Backofen, R., Sahinalp, S.C.: biRNA: Fast RNA-RNA binding sites prediction. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 25–36. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Chitsaz, H., Salari, R., Sahinalp, S.C., Backofen, R.: A partition function algorithm for interacting nucleic acid strands. Bioinformatics 25, 365–373 (2009)CrossRefGoogle Scholar
  6. 6.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer (2005)Google Scholar
  7. 7.
    Harary, F.: Graph Theory. Addison-Wesley (1969)Google Scholar
  8. 8.
    Huang, F.W.D., Qin, J., Reidys, C.M., Stadler, P.F.: Partition function and base pairing probabilities for RNA-RNA interaction prediction. Bioinformatics 25, 2646–2654 (2009)CrossRefGoogle Scholar
  9. 9.
    Li, A.X., Marz, M., Qin, J., Reidys, C.M.: RNA-RNA interaction prediction based on multiple sequence alignments. Bioinformatics 27, 456–463 (2011)CrossRefGoogle Scholar
  10. 10.
    Lin, G.: On the Bandpass problem. Journal of Combinatorial Optimization 22, 71–77 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Saad, M.: On the approximation of optimal structures for RNA-RNA interaction. IEEE/ACM Transactions on Computational Biology and Bioinformatics 6, 682–688 (2009)CrossRefGoogle Scholar
  12. 12.
    Meyer, I.M.: Predicting novel RNA-RNA interactions. Current Opinion in Structural Biology 18, 387–393 (2008)CrossRefGoogle Scholar
  13. 13.
    Mückstein, U., Tafer, H., Hackermüller, J., Bernhart, S.H., Stadler, P.F., Hofacker, I.L.: Thermodynamics of RNA-RNA binding. Bioinformatics 22, 1177–1182 (2006)CrossRefGoogle Scholar
  14. 14.
    Paluch, K., Mucha, M., Mądry, A.: A 7/9- approximation algorithm for the maximum traveling salesman problem. In: Dinur, I., et al. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 298–311. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Pervouchine, D.D.: Iris: intermolecular RNA interaction search. Genome Informatics 15, 92–101 (2004)Google Scholar
  16. 16.
    Salari, R., Backofen, R., Sahinalp, S.C.: Fast prediction of RNA-RNA interaction. Algorithms for Molecular Biology 5, 5 (2010)CrossRefGoogle Scholar
  17. 17.
    Sun, J.S., Manley, J.L.: A novel U2-U6 snRNA structure is necessary for mammalian mRNA splicing. Genes & Development 9, 843–854 (1995)CrossRefGoogle Scholar
  18. 18.
    Tong, W., Chen, Z.-Z., Wang, L., Xu, Y., Xu, J., Goebel, R., Lin, G.: An approximation algorithm for the Bandpass-2 problem. ArXiv e-print 1307.7089 (July 2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Weitian Tong
    • 1
  • Randy Goebel
    • 1
  • Tian Liu
    • 2
  • Guohui Lin
    • 1
  1. 1.Department of Computing ScienceUniversity of AlbertaEdmontonCanada
  2. 2.Key Laboratory of High Confidence Software Technologies, Ministry of Education Institute of Software, School of Electronic Engineering and Computer SciencePeking UniversityBeijingChina

Personalised recommendations