Scheduling for Electricity Cost in Smart Grid

  • Mihai Burcea
  • Wing-Kai Hon
  • Hsiang-Hsuan Liu
  • Prudence W. H. Wong
  • David K. Y. Yau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8287)


We study an offline scheduling problem arising in demand response management in smart grid. Consumers send in power requests with a flexible set of timeslots during which their requests can be served. For example, a consumer may request the dishwasher to operate for one hour during the periods 8am to 11am or 2pm to 4pm. The grid controller, upon receiving power requests, schedules each request within the specified duration. The electricity cost is measured by a convex function of the load in each timeslot. The objective of the problem is to schedule all requests with the minimum total electricity cost. As a first attempt, we consider a special case in which the power requirement and the duration a request needs service are both unit-size. For this problem, we present a polynomial time offline algorithm that gives an optimal solution and show that the time complexity can be further improved if the given set of timeslots is a contiguous interval.


Schedule Problem Smart Grid Optimal Assignment Binary Search Tree Separable Convex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, S.: Energy-efficient algorithms. Communication ACM 53(5), 86–96 (2010)CrossRefGoogle Scholar
  2. 2.
    Azar, Y.: On-line load balancing. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Caron, S., Kesidis, G.: Incentive-based energy consumption scheduling algorithms for the smart grid. In: IEEE Smart Grid Comm., pp. 391–396 (2010)Google Scholar
  4. 4.
    Chen, C., Nagananda, K.G., Xiong, G., Kishore, S., Snyder, L.V.: A communication-based appliance scheduling scheme for consumer-premise energy management systems. IEEE Trans. Smart Grid 4(1), 56–65 (2013)CrossRefGoogle Scholar
  5. 5.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)CrossRefMATHGoogle Scholar
  6. 6.
    European Commission. Europen smartgrids technology platform (2006),
  7. 7.
    Hamilton, K., Gulhar, N.: Taking demand response to the next level. IEEE Power and Energy Magazine 8(3), 60–65 (2010)CrossRefGoogle Scholar
  8. 8.
    Hochbaum, D.S., Shanthikumar, J.G.: Convex separable optimization is not much harder than linear optimization. J. ACM 37(4), 843–862 (1990)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power and Energy Magazine 7(2), 52–62 (2009)CrossRefGoogle Scholar
  10. 10.
    Kannberg, L.D., Chassin, D.P., DeSteese, J.G., Hauser, S.G., Kintner-Meyer, M.C., Pratt, R.G., Schienbein, L.A., Warwick, W.M.: GridWiseTM: The benefits of a transformed energy system. CoRR, nlin/0409035 (September 2004)Google Scholar
  11. 11.
    Karzanov, A.V., McCormick, S.T.: Polynomial methods for separable convex optimization in unimodular linear spaces with applications. SIAM J. Comput. 26(4), 1245–1275 (1997)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Koutsopoulos, I., Tassiulas, L.: Control and optimization meet the smart power grid: Scheduling of power demands for optimal energy management. In: Proc. e-Energy, pp. 41–50 (2011)Google Scholar
  13. 13.
    Krishnan, R.: Meters of tomorrow (in my view). IEEE Power and Energy Magazine 6(2), 96–94 (2008)Google Scholar
  14. 14.
    Li, H., Qiu, R.C.: Need-based communication for smart grid: When to inquire power price? CoRR, abs/1003.2138 (2010)Google Scholar
  15. 15.
    Li, Z., Liang, Q.: Performance analysis of multiuser selection scheme in dynamic home area networks for smart grid communications. IEEE Trans. Smart Grid 4(1), 13–20 (2013)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Logenthiran, T., Srinivasan, D., Shun, T.Z.: Demand side management in smart grid using heuristic optimization. IEEE Trans. Smart Grid 3(3), 1244–1252 (2012)CrossRefGoogle Scholar
  18. 18.
    Lui, T., Stirling, W., Marcy, H.: Get smart. IEEE Power and Energy Magazine 8(3), 66–78 (2010)CrossRefGoogle Scholar
  19. 19.
    Ma, C.Y.T., Yau, D.K.Y., Rao, N.S.V.: Scalable solutions of markov games for smart-grid infrastructure protection. IEEE Trans. Smart Grid 4(1), 47–55 (2013)CrossRefGoogle Scholar
  20. 20.
    Maharjan, S., Zhu, Q., Zhang, Y., Gjessing, S., Basar, T.: Dependable demand response management in the smart grid: A stackelberg game approach. IEEE Trans. Smart Grid 4(1), 120–132 (2013)CrossRefGoogle Scholar
  21. 21.
    Minoux, M.: A polynomial algorithm for minimum quadratic cost flow problems. European Journal of Operational Research 18(3), 377–387 (1984)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Minoux, M.: Solving integer minimum cost flows with separable convex cost objective polynomially. In: Gallo, G., Sandi, C. (eds.) Netflow at Pisa. Mathematical Programming Studies, vol. 26, pp. 237–239. Springer, Heidelberg (1986)Google Scholar
  23. 23.
    Mohsenian-Rad, A.-H., Wong, V., Jatskevich, J., Schober, R.: Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid. In: Innovative Smart Grid Technologies (ISGT) (2010)Google Scholar
  24. 24.
  25. 25.
    Salinas, S., Li, M., Li, P.: Multi-objective optimal energy consumption scheduling in smart grids. IEEE Trans. Smart Grid 4(1), 341–348 (2013)CrossRefGoogle Scholar
  26. 26.
    Sokkalingam, P.T., Ahuja, R.K., Orlin, J.B.: New polynomial-time cycle-canceling algorithms for minimum-cost flows. Networks 36(1), 53–63 (2000)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Toronto Hydro Corporation. Peaksaver Program,
  28. 28.
    UK Department of Energy & Climate Change. Smart grid: A more energy-efficient electricity supply for the UK (2013),
  29. 29.
    US Department of Energy. The Smart Grid: An Introduction (2009),
  30. 30.
    Végh, L.A.: Strongly polynomial algorithm for a class of minimum-cost flow problems with separable convex objectives. In: Proceedings of the 44th Symposium on Theory of Computing, STOC 2012, pp. 27–40. ACM, New York (2012)Google Scholar
  31. 31.
    Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS), pp. 374–382 (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Mihai Burcea
    • 1
  • Wing-Kai Hon
    • 2
  • Hsiang-Hsuan Liu
    • 2
  • Prudence W. H. Wong
    • 1
  • David K. Y. Yau
    • 3
  1. 1.Department of Computer ScienceUniversity of LiverpoolUK
  2. 2.Department of Computer ScienceNational Tsing Hua UniversityTaiwan
  3. 3.Information Systems Technology and DesignSingapore University of Technology and DesignSingapore

Personalised recommendations