The Multi-parameterized Cluster Editing Problem

  • Faisal N. Abu-Khzam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8287)

Abstract

The Cluster Editing problem seeks a transformation of a given undirected graph into a transitive graph via a minimum number of edge-edit operations. Existing algorithms often exhibit slow performance and could deliver clusters of no practical significance, such as singletons. A constrained version of Cluster Editing is introduced, featuring more input parameters that set a lower bound on the size of a clique-cluster as well as upper bounds on the amount of both edge-additions and deletions per vertex. The new formulation allows us to solve Cluster Editing (exactly) in polynomial time when edge-edit operations per vertex is smaller than half the minimum cluster size. Moreover, we address the case where the new edge addition and deletion bounds (per vertex) are small constants. We show that Cluster Editing has a linear-size kernel in this case.

References

  1. 1.
    Böcker, S., Briesemeister, S., Bui, Q.B.A., Truss, A.: Going weighted: Parameterized algorithms for cluster editing. Theor. Comput. Sci. 410(52), 5467–5480 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Böcker, S.: A golden ratio parameterized algorithm for cluster editing. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp. 85–95. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: Evaluation and experiments. Algorithmica 60(2), 316–334 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cao, Y., Chen, J.: Cluster editing: Kernelization based on edge cuts. Algorithmica 64(1), 152–169 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 459–468. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  9. 9.
    Ghrayeb, A.: Improved search-tree algorithms for the cluster edit problem. MS thesis, Lebanese American University (2011)Google Scholar
  10. 10.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theor. Comp. Sys. 38(4), 373–392 (2005)CrossRefMATHGoogle Scholar
  11. 11.
    Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8-10), 718–726 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Applied Mathematics 160(15), 2259–2270 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Krivánek, M., Morávek, J.: NP -hard problems in hierarchical-tree clustering. Acta Inf. 23(3), 311–323 (1986)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Langston, M.A.: Private communication (2012)Google Scholar
  15. 15.
    Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press (2006)Google Scholar
  16. 16.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1-2), 173–182 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for edge domination. Algorithmica 64(4), 535–563 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Faisal N. Abu-Khzam
    • 1
  1. 1.Department of Computer Science and MathematicsLebanese American UniversityBeirutLebanon

Personalised recommendations