Advertisement

Online Bin Covering: Expectations vs. Guarantees

  • Marie G. Christ
  • Lene M. Favrholdt
  • Kim S. Larsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8287)

Abstract

Bin covering is a dual version of classic bin packing. As usual, bins have size one and items with sizes between zero and one must be packed. However, in bin covering, the objective is to cover as many bins as possible, where a bin is covered if the sizes of items placed in the bin sum up to at least one. We are considering the online version of bin covering. Two classic algorithms for online bin packing that have natural dual versions are Harmonic k and Next-Fit. Though these two algorithms are quite different in nature, competitive analysis does not distinguish these bin covering algorithms.

In order to understand the combinatorial structure of the algorithms better, we turn to other performance measures, namely relative worst order, random order, and max/max analysis, as well as analyses under restricted input assumptions or uniformly distributed input. In this way, our study also supplements the ongoing systematic studies of the relative strengths of various performance measures.

We make the case that when guarantees are needed, even under restricted input sequences, the dual Harmonic k algorithm is preferable. In addition, we establish quite robust theoretical results showing that if items come from a uniform distribution or even if just the ordering of items is uniformly random, then dual Next-Fit is the right choice.

Keywords

Input Sequence Competitive Ratio Online Algorithm Large Item Small Item 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assmann, S.F., Johnson, D.S., Kleitman, D.J., Leung, J.Y.-T.: On a dual version of the one-dimensional bin packing problem. J. Algorithms 5(4), 502–525 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms. Algorithmica 11(1), 73–91 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms. ACM Trans. Algorithms 3(2) (2007)Google Scholar
  4. 4.
    Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied to paging. J. Comput. Sys. Sci. 73(5), 818–843 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boyar, J., Gupta, S., Larsen, K.S.: Access graphs results for LRU versus FIFO under relative worst order analysis. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 328–339. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Boyar, J., Gupta, S., Larsen, K.S.: Relative interval analysis of paging algorithms on access graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 195–206. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Boyar, J., Irani, S., Larsen, K.S.: A comparison of performance measures for online algorithms. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 119–130. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Boyar, J., Larsen, K.S., Maiti, A.: A comparison of performance measures via online search. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM 2012 and FAW 2012. LNCS, vol. 7285, pp. 303–314. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Christ, M., Favrholdt, L.M., Larsen, K.S.: Online bin covering: Expectations vs. guarantees. arXiv:1309.6477(cs.DS) (2013)Google Scholar
  10. 10.
    Csirik, J., Frenk, J.B.G., Galambos, G., Kan, A.H.G.R.: Probabilistic analysis of algorithms for dual bin packing problems. J. Algorithms 12(2), 189–203 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Csirik, J., Totik, V.: Online algorithms for a dual version of bin packing. Discrete Appl. Math. 21(2), 163–167 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Csirik, J., Woeginger, G.: On-line packing and covering problems. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 147–177. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line algorithms. SIGACT News 36(3), 67–81 (2005)CrossRefGoogle Scholar
  14. 14.
    Durrett, R.: Probability: Theory and Examples. Dixbury Press (1991)Google Scholar
  15. 15.
    Ehmsen, M.R., Kohrt, J.S., Larsen, K.S.: List factoring and relative worst order analysis. Algorithmica 66(2), 287–309 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Epstein, L., Favrholdt, L.M., Kohrt, J.S.: Comparing online algorithms for bin packing problems. J. Scheduling 15(1), 13–21 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hoffmann-Jørgensen, J.: Probability with a View towards Statistics, vol. I. Chapman & Hall (1994)Google Scholar
  18. 18.
    Coffman Jr., E.G., Csirik, J., Rónyai, L., Zsbán, A.: Random-order bin packing. Discrete Appl. Math. 156, 2810–2816 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica 3, 79–119 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kenyon, C.: Best-fit bin-packing with random order. In: SODA, pp. 359–364 (1996)Google Scholar
  21. 21.
    Lee, C.C., Lee, D.T.: A simple on-line bin-packing algorithm. J. ACM 32(3), 562–572 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ramanan, P.V., Brown, D.J., Lee, C.C., Lee, D.T.: On-line bin packing in linear time. J. Algorithms 10(3), 305–326 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Seiden, S.S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Comm. ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Woeginger, G.: Improved space for bounded space, on-line bin-packing. SIAM J. Disc. Math. 6(4), 575–581 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Marie G. Christ
    • 1
  • Lene M. Favrholdt
    • 1
  • Kim S. Larsen
    • 1
  1. 1.University of Southern DenmarkOdenseDenmark

Personalised recommendations