Advertisement

Satellite Observations of North American Climate Change

  • George OhringEmail author
  • Peter Romanov
  • Ralph Ferraro
  • Andrew Heidinger
  • Istvan Laszlo
  • Cheng-Zhi Zou
  • Mike Foster
Chapter
Part of the Regional Climate Studies book series (REGCLIMATE)

Abstract

For the distant past, our observational record of climate change in North America is based on paleoclimatic proxy data, as discussed in Chap. 1. For the last 150 years or so, systematic, continuous instrumental measurements at weather stations have been the primary source of the climate record, as reviewed in Chap. 2. For the last four decades, observations of the Earth from space have provided a new source of information. This chapter focuses on the results of satellite measurements of the atmosphere and surface of North America.

Keywords

Normalize Difference Vegetation Index Snow Cover Tropical Rainfall Measure Mission Advanced Very High Resolution Radiometer Advanced Very High Resolution Radiometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achard F, Eva H, Mayaux P et al (2004) Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Global Biogeochem Cycles 18:GB2008. doi: 10.1029/2003GB002142
  2. Adler RF, Huffman GJ, Chang A, Ferraro R et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydromet 4:1147–1167Google Scholar
  3. Adler RF, Kidd C, Petty G et al (2001) Intercomparison of global precipitation products: the third precipitation intercomparison project (PIP-3). Bull Am Meteorol Soc 82:1377–1396Google Scholar
  4. Adler RF, Negri AJ (1988) A satellite infrared technique to estimate tropical convective and stratiform rainfall. J Appl Meteorol 27:30–51Google Scholar
  5. Alcaraz-Segura D, Chuvieco E, Epstein HE et al (2010) Debating the greening vs. browning of the North American boreal forest: differences between satellite datasets. Glob Change Biol 16(2):760–770Google Scholar
  6. Anderson Hanson JD, Haas RH (1993) Evaluating landsat thematic mapper derived vegetation indices for estimating aboveground biomass on semiarid rangelands. Remote Sens Environ 45:165–175Google Scholar
  7. Aonashi KJ, Awaka M, Hirose T et al (2009) GSMaP passive microwave precipitation retrieval algorithm: algorithm description and validation. J Meteorol Soc Japan 87:119–136Google Scholar
  8. Arkin PA, Meisner BN (1987) The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–1984. Mon Wea Rev 115:51–74Google Scholar
  9. Arkin PA, Xie PP (1994) The global precipitation climatology project: first algorithm intercomparison project. Bull Am Meteorol Soc 75:401–419Google Scholar
  10. Armstrong RL, Brodzik MJ, Knowles K, Savoie M (2009) Global monthly EASE-grid snow water equivalent climatology. National Snow and Ice Data Center Digital media, BoulderGoogle Scholar
  11. Arndt DS, Baringer MO, Johnson MR (eds) (2010) State of the climate in 2009. Bull Am Meteorol Soc 91:S1–S224Google Scholar
  12. Barkstrom BR (1984) The earth radiation budget experiment (ERBE). Bull Am Meteorol Soc 65:1170–1185Google Scholar
  13. Barrett EC, Dodge J, Goodman HM et al (1994) The first WetNet precipitation intercomparison project. Remote Sens Rev 11:49–60Google Scholar
  14. Barrett EC, Martin DW (1981) The use of satellite data in rainfall monitoring. Academic Press, LondonGoogle Scholar
  15. Berner LT, Beck PS, Bunn AG et al (2011) High-latitude tree growth and satellite vegetation indices: correlation and trends in Russia and Canada (1982–2008). J Geophys Res 116:G01015. doi: 10.1029/2010JG001475 Google Scholar
  16. Brown ME, Pinzon JE, Didan K (2006) Evaluation of the consistency of long-term NDVI time series derived from AVHRR SPOT-vegetation SeaWIFS MODIS and landsat ETM+. IEEE Trans Geosci Remote Sens 44:1787–1793Google Scholar
  17. Brown R, Derksen C, Wang L (2007) Assessment of spring snow cover duration variability over northern Canada from satellite datasets. Remote Sens Environ 111:367–381Google Scholar
  18. Brown R, Derksen C, Wang L (2010) A multi-data set analysis of variability and change in arctic spring snow cover extent 1967–2008. J Geophys Res 115:D16111. doi: 10.1029/2010JD013975 Google Scholar
  19. Bunn AG, Goetz SJ (2006) Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: the influence of seasonality cover type and vegetation density. Earth Interact 10:1–19Google Scholar
  20. Callaghan T, Johansson M, Brown R et al (2011) The changing face of Arctic snow cover: a synthesis of observed and projected changes. Ambio 40:17–31Google Scholar
  21. Cao C, Weinreb M, Xu H (2004) Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J Atmos Oceanic Technol 21:537–542Google Scholar
  22. Cavalieri DJ, Parkinson CL (2008) Antarctic sea ice variability and trends 1979–2006. J Geophys Res 113:C07004. doi: 10.1029/2007JC004564 Google Scholar
  23. Cavalieri DJ, Parkinson CL, Gloersen P et al (1999) Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J Geophys Res 104(C7):15803–15814Google Scholar
  24. Cavalieri DJ, Parkinson CL, Gloersen P, Zwally HJ (1997) Arctic and Antarctic sea ice concentrations from multichannel passive-microwave satellite data sets: October 1978 to September 1995 user’s guide. NASA Technical Memorandum 104647, Washington D. C, p 17Google Scholar
  25. Chahine MT (1974) Remote sounding of cloudy atmospheres 1: single cloud layer. J Atmos Sci 31:233–243Google Scholar
  26. Champeaux JL, Arcos D, Bazile E et al (2000) AVHRR-derived vegetation mapping over Western Europe for use in numerical weather prediction models. Int J Remote Sens 21:1183–1199Google Scholar
  27. Chapin FS III, Sturm M, Serreze MC et al (2005) Role of land-surface changes in Arctic summer warming. Science 310:657–660Google Scholar
  28. Christy JR, Spencera RW, Norris WB (2011) The role of remote sensing in monitoring global bulk tropospheric temperatures. Int J Remote Sens 32:671–685Google Scholar
  29. Christy JR, Norris WB, Spencer RW, Hnilo JJ (2007) Tropospheric temperature change since 1979 from tropical radiosonde and satellite measurements. J Geophys Res 112:D06102. doi: 10.1029/2005JD006881 Google Scholar
  30. Christy JR, Spencer RW, Braswell WD (2000) MSU tropospheric temperatures: data set construction and radiosonde comparisons. J Atmos Oceanic Technol 17:1153–1170Google Scholar
  31. Christy JR, Spencer RW, Norris WB, Braswell WD (2003) Error estimates of version 50 of MSU-AMSU bulk atmospheric temperature. J Atmos Oceanic Technol 20:613–629Google Scholar
  32. Christy JR, Spencer WR, Lobel ES (1998) Analysis of the merging procedure for the MSU daily temperature time series. J Clim 11:2016–2041Google Scholar
  33. Comiso JC, Cavalieri DJ, Parkinson CL, Gloersen P (1997) Passive microwave algorithms for sea ice concentration: a comparison of two techniques. Remote Sens Environ 60:357–384Google Scholar
  34. Comiso J (1999) Bootstrap sea ice concentrations from nimbus-7 SMMR and DMSP SSM/I. National Snow and Ice Data Center, Boulder Colorado USA, updated 2008. http://nsidc.org/data/docs/daac/nsidc0079_bootstrap_seaice.gd.html
  35. Comiso JC (2003) Large scale characteristics and variability of the global sea ice cover. In: Thomas DN, Dieckmann GS (ed.) Sea ice: an introduction to its physics chemistry biology and geology. Wiley-Blackwell, Oxford, p 416Google Scholar
  36. Comiso JC, Nishio F (2008) Trends in the sea ice cover using enhanced and compatible AMSR-E SSM/I and SMMR data. J Geophys Res 113:C02S07. doi: 10.1029/2007JC004257
  37. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703. doi: 10.1029/2007GL031972 Google Scholar
  38. de Jong R, de Bruin S, de Wit A et al (2011) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115(2):692–702Google Scholar
  39. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis configuration and performance of the data assimilation system. Quart J Royal Meteorol Soc 137:553–597. doi: 10.1002/qj828 Google Scholar
  40. Derksen CA, Walker A, LeDrew E, Goodison B (2003) Combining SMMR and SSM/I data for time series analysis of central North American snow water equivalent. J Hydrometeorol 4:304–316Google Scholar
  41. Dery SJ, Brown RD (2007) Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys Res Lett 34:L22504. doi: 10.1029/2007GL031474 Google Scholar
  42. Duguay CR, Prowse TD, Bonsal BR et al (2006) Recent trends in Canadian lake ice cover. Hydrol Process 20:781–801Google Scholar
  43. Dutton EG, Nelson DW, Stone RS et al (2006) Decadal variations in surface solar irradiance as observed in a globally remote network. J Geophys Res-Atmos 111:D19101. doi: 10.1029/2006JD007653
  44. Dye DG (2002) Variability and trends in the annual snow cover cycle in Northern Hemisphere land areas 1972–2000. Hydrol Process 16:3065–3077Google Scholar
  45. Dyer JL and Mote TL (2006) Spatial variability and trends in observed snow depth over North America. Geophys Res Lett 33:L16503. doi: 10.1029/2006GL027258 2006
  46. Ebert EE, Manton MJ (1998) Performance of satellite rainfall estimation algorithms during TOGA COARE. J Atmos Sci 55:1537–1557Google Scholar
  47. Evan AT, Heidinger AK, Vimont DJ (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys Res Lett 34:L04701. doi 10.1029/2006gl028083
  48. Ferraro RR, Weng F, Grody NC (1996) An eight-year (1987–1994) time series of rainfall clouds water vapor snow cover and sea ice derived from SSM/I measurements. Bull Am Meteorol Soc 77:891–905Google Scholar
  49. Ferraro RR, Marks GF (1995) The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J Atmos Oceanic Technol 12:755–770Google Scholar
  50. Foster JL, Hall DK, Kelly REJ, Chiu L (2009) Seasonal snow extent and snow mass in South America using SMMR and SSM/I passive microwave data (1979–2006). Remote Sens Environ 113:291–305Google Scholar
  51. Foster JL, Sun C, Walker JP et al (2005) Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens Environ 94:187–203Google Scholar
  52. Foster MJ, Heidinger AK (2012) PATMOS-x results from a diurnally corrected thirty-year satellite cloud climatology. J Clim 26:414–425. doi: 10.1175/JCLI-D-11-006661 Google Scholar
  53. Free M, Seidel DJ, Angell JK, Lanzante J, Durre I, Peterson TC (2005) Radiosonde atmospheric temperature products for assessing climate (RATPAC): a new data set of large-area anomaly time series. J Geophys Res 110:D22101. doi: 10.1029/2005JD006169 Google Scholar
  54. Frohlich C (2009) Evidence of a long-term trend in total solar irradiance. Astron Astrophys 501(3):L27–U508. doi: 10.1051/0004-6361/200912318 Google Scholar
  55. Fu Q, Johanson CM (2004) Stratospheric influence on MSU-derived tropospheric temperature trends: a direct error analysis. J Clim 17:4636–4640Google Scholar
  56. Fu Q, Johanson CM (2005) Satellite-derived vertical dependence of tropical tropospheric temperature trends. Geophys Res Lett 32:L10703. doi: 10.1029/2004GL022266 Google Scholar
  57. Fu Q, Johanson CM, Warren SG, Seidel DJ (2004) Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends. Nature 429:55–58Google Scholar
  58. Gamon JA, Field CB, Goulden ML et al (1995) Relationships between NDVI canopy structure and photosynthesis in three Californian vegetation types. Ecol Appl 5:28–41Google Scholar
  59. Ganon AS, Gough WA (2005) Trends in the dates of ice freeze-up and breakup over Hudson Bay Canada. Arctic 58:370–382Google Scholar
  60. Gilgen H, Wild M, Ohmura A (1998) Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J Clim 11(8):2042–2061Google Scholar
  61. Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. In: Proceedings of the National Academy of Sciences of the United States of America 102: 13521–13525Google Scholar
  62. Goetz SJ, Epstein HE, Bhatt US et al (2011) Recent changes in arctic vegetation: satellite observations and simulation model predictions. In: Gutman G, Reissel A (eds) Eurasian Arctic land cover and land use in a changing climate. Springer, Berlin, pp 9–36Google Scholar
  63. Goldberg M, Ohring G, Butler J et al (2011) The global space-based inter-calibration system. Bull Am Meterol Soc 92:467–475Google Scholar
  64. Gopolan K, Wang NY, Liu C, Ferraro R (2010) Version 7 of the TRMM 2A12 land precipitation algorithm. J Atmos Oceanic Tech 27:1343–1354Google Scholar
  65. Grody NC (1976) Remote-sensing of atmospheric water-content from satellites using microwave radiometry. IEEE Trans Antennas Propag 24:155–162Google Scholar
  66. Grody NC (1991) Classification of snow cover and precipitation using the special sensor microwave/imager (SSM/I). J Geophys Res 96:7423–7435Google Scholar
  67. Grody NC, Basist A (1996) Global identification of snow cover using SSM/I measurements. IEEE Trans Geosci Remote Sens 34:237–249Google Scholar
  68. Grody NC, Vinnikov KY, Goldberg MD, Sullivan J, Tarpley JD (2004) Calibration of multisatellite observations for climate studies: microwave Sounding Unit (MSU). J Geophys Res 109:D24104. doi: 10.1029/2004JD005079 Google Scholar
  69. Groisman PYa, Karl TR, Knight RW, Stenchikov GL (1994) Changes of snow cover temperature and radiative heat balance over the Northern Hemisphere. J Clim 7:1633–1656Google Scholar
  70. Gupta SK, Stackhouse PW Jr, Cox SJ, Mikovitz JC, Zhang T (2006) Surface radiation budget project completes 22-year data set. GEWEX News 16(4):12–13Google Scholar
  71. Gutman G (1999) On the use of long-term global data of land reflectances and vegetation indices derived from the advanced very high resolution radiometer. J Geophys Res 104:6241–6255Google Scholar
  72. Haimberger L (2007) Homogenization of radiosonde temperature time series using innovation statistics. J Clim 20:1377–1403Google Scholar
  73. Haimberger L, Tavolato C, Sperka S (2008) Towards the elimination of warm bias in historic radiosonde records—some new results from a comprehensive intercomparison of upper air data. J Clim 21:4587–4606Google Scholar
  74. Hall DK, Riggs G, Salomonson V et al (2002) MODIS snow cover products. Remote Sens Environ 83:181–194Google Scholar
  75. Heidinger AK, Amato ET, Foster MJ, Walther A (2012) A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J Appl Materol Climator 51:1129–1144Google Scholar
  76. Helfrich SR, McNamara D, Ramsay BH et al (2006) Enhancements to and forthcoming developments in the interactive multisensor snow and ice mapping system (IMS). Hydrol Process 21:1576–1586Google Scholar
  77. Hinkelman LM, Stackhouse PW, Wielicki BA et al (2009) Surface insolation trends from satellite and ground measurements: comparisons and challenges. J Geophys Res-Atmos 114:D00d07. doi: 10.1029/2008JD011004
  78. Hinzman LD, Bettez ND, Bolton WR et al (2005) Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim Change 72:251–298Google Scholar
  79. Hirose MR, Oki R, Short D, Nakamura K (2009) Regional characteristics of scale-based precipitation systems from ten years of TRMM PR data. J Meteorol Soc Japan 87:353–368Google Scholar
  80. Hossain F, Huffman GJ (2008) Investigating error metrics for satellite rainfall data at hydrological relevant scales. J Hydrometeorol 9:563–575Google Scholar
  81. Hsu K, Gao X, Sorooshian S, Gupta HV (1997) Precipitation estimation from remotely sensed information using artificial neural networks. J Appl Meteorol 36:1176–1190Google Scholar
  82. Huete AR, Liu HQ, Batchily K, van Leeuwen W (1997) A comparison of vegetation indices over a global set of TM Images for EOS-MODIS. Remote Sens Environ 59:440–451Google Scholar
  83. Huffman GJ, Adler RF, Arkin P et al (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78:5–20Google Scholar
  84. Huffman GJ, Adler RF, Bolvin DT et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global multiyear combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55Google Scholar
  85. Huffman GJ, Adler RF, Morrissey MM et al (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2:36–50Google Scholar
  86. Hurrell JW, Brown SJ, Trenberth KE, Christy JR (2000) Comparison of tropospheric temperatures from radiosondes and satellites: 1979–1998. Bull Am Meteorol Soc 81:2165–2177Google Scholar
  87. Hurrell JW, Trenberth KE (1997) Spurious trends in satellite MSU temperatures from merging different satellite records. Nature 386:164–167Google Scholar
  88. Hurrell JW, Trenberth KE (1998) Difficulties in obtaining reliable temperature trends: reconciling the surface and satellite microwave sounding unit records. J Clim 11:945–967Google Scholar
  89. Iguchi IK, Toshiaki J, Kwiatkowski R et al (2009) Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J Meteorol Soc Japan 87:1–30Google Scholar
  90. Iguchi T, Kozu T, Meneghini R et al (2000) Rain-profiling algorithm for the TRMM precipitation radar. J Appl Meteorol 39:2038–2052Google Scholar
  91. Iguchi T, Oki R, Smith EA, Furuhama Y (2002) Global Precipitation Measurement program and the development of dual-frequency precipitation radar. J Comm Res Lab 49:37–45Google Scholar
  92. IPCC (2007) Observations: Surface and atmospheric climate change. In: Solomon S, Qin D, Manning M (eds) Climate change 2007: the physical basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  93. James ME, Kalluri SN (1994) The pathfinder AVHRR land data set: an improved coarse-resolution data set for terrestrial monitoring international. J Remote Sens 15:3347–3363Google Scholar
  94. Johanson CM, Fu Q (2006) Robustness of tropospheric temperature trends from MSU channels 2 and 4. J Clim 19:4234–4242Google Scholar
  95. Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503Google Scholar
  96. Karl TR et al (Eds) (2006) Temperature trends in the lower atmosphere: steps for understanding and reconciling differences. Climate change science program and subcommittee on global change research, Washington DC. http://www.climatescience.gov/Library/sap/sap1-1/finalreport/sap1-1-final-all.pdf
  97. Kidwell KB (ed) (1997) Global vegetation index user’s guide. US Department of Commerce Technical Report, Washington DCGoogle Scholar
  98. Kogan F, Guo W, Jelenak A (2011) Global vegetation health: long-term data records. In: Kogan F, Powell A, Fedorov O (eds) Use of satellite and in-situ data to improve sustainability, NATO science for peace and security series C: environmental security. Springer, Berlin, pp 247–256Google Scholar
  99. Kongoli C, Boukabara SA, Yan et al (2011) A new sea-ice concentration algorithm based on microwave surface emissivities—application to AMSU measurements. IEEE Trans Geosci Remote Sens 49:175–189Google Scholar
  100. Kouraev AV, Papa F, Mognard NM, Buharizin PI, Cazenaved A, Cretaux J-F, Dozortseva J, Rem F (2004) J Mar Syst 47:89–100Google Scholar
  101. Kouraev AV, Semovski SV, Shimaraev MN et al (2007) Observations of Lake Baikal ice from satellite altimetry and radiometry. Remote Sens Environ 108:240–253Google Scholar
  102. Kummerow C, Hong Y, Olson WS et al (2001) The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J Appl Meteorol 40:1801–1819Google Scholar
  103. Kummerow C, Barnes W, Kozu T et al (1998) The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Oceanic Technol 15:809–817Google Scholar
  104. Kummerow C, Olson WS, Giglio L (1996) A simplified scheme for obtaining precipitation and vertical hydrometeor profile from passive microwave. IEEE Trans Geosci Remote Sens 34:1213–1232Google Scholar
  105. Kunkel KE, Andsager K, Easterling DR (1999) Long-term trends in extreme precipitation events over the conterminous United States and Canada. J Clim 12:2515–2527Google Scholar
  106. Kwok R, Rothrock DA (2009) Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys Res Lett 36:L15501. doi: 10.1029/2009GL039035 Google Scholar
  107. L’Ecuyer TS, Stephens GL (2002) An estimation-based precipitation retrieval algorithm for attenuating radars. J Appl Meteorol 41:272–285Google Scholar
  108. Lacis AA, Hansen JE (1974) A parameterization for the absorption of solar radiation in the earth’s atmosphere. J Atmos Sci 31:118–132Google Scholar
  109. Lanzante J, Klein S, Seidel DJ (2003) Temporal homogenization of monthly radiosonde temperature data part I: methodology. J Clim 16:224–240Google Scholar
  110. Laszlo I, Pinker R (2002) Shortwave radiation budget of the Earth: absorption and cloud radiative effects. Idojaras 106:189–205Google Scholar
  111. Laszlo I, Pinker RT, Whitlock CH (1997) Comparison of short-wave fluxes derived from two versions of the ISCCP products. In: IRS ‘96: current problems in atmospheric radiation. A. Deepak Publishing, Hampton, Virginia, USA, pp 762–765Google Scholar
  112. Latifovik R, Pouliot D (2007) Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sens Environ 106:492–507Google Scholar
  113. Lemke P, Ren J, Alley RB, et al (2007) Observations: changes in snow ice and frozen ground In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  114. Leroy S, Anderson JG, Ohring G (2008) Climate signal detection times and constraints on climate benchmark accuracy requirements. J Clim 21:841–846Google Scholar
  115. Liepert BG (2002) Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys Res Lett 29(10):1421Google Scholar
  116. Liu G (2008) Deriving snow cloud characteristics from CloudSat observations. J Geophys Res 113:D00A09. doi: 10.1029/2007JD0009766
  117. Long CN, Dutton EG, Augustine JA et al (2009) Significant decadal brightening of downwelling shortwave in the continental United States. J Geophys Res-Atmos 114:D00D06. doi: 10.1029/2008JD011263
  118. Maslanik JA, Fowler C, Stroeve J et al (2007) A younger thinner Arctic ice cover: increased potential for rapid extensive sea ice loss. Geophys Res Lett 34:L24501. doi: 10.1029/2007GL032043 Google Scholar
  119. Matrosov S (2007) Potential for attenuation-based estimates of rainfall rate from CloudSat. Geophys Res Lett 34:L05817. doi: 10.1029/2006GL029161 Google Scholar
  120. McCollum JR, Ferraro RR (2003) The next generation of NOAA/NESDIS SSM/I TMI and AMSR-E microwave land rainfall algorithms. J Geophys Res 108:8382–8404Google Scholar
  121. Mears CA, Schabel MC, Wentz FJ (2003) A reanalysis of the MSU channel 2 tropospheric temperature record. J Clim 16:3650–3664Google Scholar
  122. Mears CA, Wentz FJ (2005) The effect of diurnal correction on the satellite-derived lower tropospheric temperature. Science 309:1548–1551Google Scholar
  123. Mears CA, Wentz FJ (2009) Construction of the remote sensing systems V32 atmospheric temperature records from the MSU and AMSU microwave sounders. J Atmos Oceanic Technol 26(6):1040–1056Google Scholar
  124. Meier WN (2005) Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas. IEEE Trans Geosci Remote Sens 43(6):1324–1337Google Scholar
  125. Michaellian M, Hogg EH, Hall RJ, Arsenault E (2010) Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob Change Biol. doi: 10.1111/j1365-2486201002357x Google Scholar
  126. Myneni RB, Hall FG, Sellers PJ, Marshak AL (1995) The meaning of spectral vegetation indices. IEEE Trans Geosci Remote Sens 33:481–486Google Scholar
  127. Neigh CS, Tucker CJ, Townshend JR (2008) North American vegetation dynamics observed with multi-resolution satellite data. Remote Sens Environ 112(4):1749–1772Google Scholar
  128. Ohring G, Wielicki B, Spencer R et al (2005) Satellite instrument calibration for measuring global climate change. Bull Am Meteorol Soc 86:1303–1313Google Scholar
  129. Ohring G, Cohen S, Norris J et al (2008) Global dimming and brightening. Eos Trans AGU 89:212Google Scholar
  130. Olson WS (1989) Physical retrieval of rainfall rates over the ocean by multispectral microwave radiometry: application to tropical cyclones. J Geophys Res 94:2267–2280Google Scholar
  131. Parkinson CL, Cavalieri DJ, Gloersen P et al (1999) Arctic sea ice extent areas and trends 1978–1996. J Geophys Res 104:20837–20856Google Scholar
  132. Pedelty J, Devadiga S, Masuoka E et al (2007) Generating a long-term land data record from the AVHRR and MODIS instruments. IEEE international geoscience and remote sensing symposium 2007 IGARSS, pp 1021–1025Google Scholar
  133. Peterson TC, Baringer MO (2009) State of the climate in 2008. Bull Am Meteorol Soc 90:S1–S196Google Scholar
  134. Pinker RT, I. Laszlo, Whitlock CH, Charlock TP (1995) Radiative flux opens new window on climate research. EOS 76(15):145. doi: 10.1029/95EO00077 Google Scholar
  135. Pinker RT, Laszlo I (1992) Global distribution of photosynthetically active radiation as observed from satellites. J Clim 5(1):56–65Google Scholar
  136. Prabhakara C, Iacovazzi RA Jr (1999) Comments on analysis of the merging procedure for the MSU daily temperature time series. J Clim 12:3331–3334Google Scholar
  137. Prabhakara C, Iacovazzi RA Jr, Yoo JM, Dalu G (2000) Global warming: evidence from satellite observations. Geophys Res Lett 27:3517–3520Google Scholar
  138. Ramanathan V, Cess RD, Harrison EF et al (1989) Cloud-radiative forcing and climate—results from the earth radiation budget experiment. Science 243:57–63Google Scholar
  139. Ramaswamy V, Freidenreich SM (1992) A study of broad-band parameterizations of the solar radiative interactions with water-vapor and water drops. J Geophys Res-Atmos 97(D11):11487–11512Google Scholar
  140. Ramsay BH (1998) The interactive multisensor snow and ice mapping system. Hydrol Process 12:1537–1546Google Scholar
  141. Riggs GA, Hall DK, Ackerman SA (1999) Sea ice extent and classification mapping with the moderate resolution imaging spectroradiometer airborne simulator. Remote Sens Environ 68:152–163Google Scholar
  142. Robock A (1980) The seasonal cycle of snow cover sea ice and surface albedo. Mon Wea Rev 108:267–285Google Scholar
  143. Romanov P, Gutman G, Csiszar I (2000) Automated monitoring of snow cover over North America with multispectral satellite data. J Appl Meteorol 39:1866–1880Google Scholar
  144. Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80(11):2261–2287Google Scholar
  145. Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS symposium, NASA SP-351 I, pp 309–317Google Scholar
  146. Sapiano MRP, Arkin PA (2008) An inter-comparison and validation of high resolution satellite precipitation estimates with three-hourly gauge data. J Hydromet 10:149–166Google Scholar
  147. Scofield A, Kuligowski RJ (2003) Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Weather Forecast 18:1037–1051Google Scholar
  148. Scofield RA (1987) The NESDIS operational convective precipitation technique. Mon Wea Rev 115:1773–1792Google Scholar
  149. Seidel DJ, Gillett NP, Lanzante JR, Shine KP, Thorne PW (2011) Stratospheric temperature trends: our evolving understanding. Wiley Interdiscip Rev Clim Change 2:592–616. doi: 10.1002/wcc125 Google Scholar
  150. Sherwood SC (2007) Simultaneous detection of climate change and observing biases in a network with incomplete sampling J Clim 20:4047–4062. doi:http://dx.doi.org/10.1175/JCLI4215.1 Google Scholar
  151. Sherwood SC, Meyer CL, Allen RJ, Titchner HA (2008) Robust tropospheric warming revealed by iteratively homogenized radiosonde data. J Clim 21:5336–5352. doi:http://dx.doi.org/10.1175/2008JCLI2320.1 Google Scholar
  152. Smith A et al (1998) Results of WetNet PIP-2 project. J Atmos Sci 55:148–1536Google Scholar
  153. Smith EA et al (2007) International global precipitation measurement (GPM) program and mission: an overview. In: Levizzani V, Bauer P, Turk FJ (eds) Advances in global change research—measuring precipitation from space EURAINSAT and the future, vol 28. Springer, The Netherlands, pp 611–653Google Scholar
  154. Smith EA, Xiang X, Mugnai A, Tripoli GJ (1994) Design of an inversion-based precipitation profile retrieval algorithm using an explicit cloud model for initial guess microphysics. Meteorol Atmos Phy 54:53–78Google Scholar
  155. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL Jr, Chen Z (eds) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, p 996Google Scholar
  156. Sorooshian S, Hsu K, Gao X et al (2000) Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull Am Meteorol Soc 81:2035–2046Google Scholar
  157. Spencer RW, Goodman HM, Hood RE (1989) Precipitation retrieval over land and ocean with the SSM/I: identification and characteristics of the scattering signal. J Atmos Ocean Tech 6:254–273Google Scholar
  158. Spencer RW, Christy JR (1992a) Precision and radiosonde validation of satellite gridpoint temperature anomalies part I: MSU channel 2. J Clim 5:847–857Google Scholar
  159. Spencer RW, Christy JR (1992b) Precision and radiosonde validation of satellite gridpoint temperature anomalies part II: tropospheric retrieval and trends during 1979–1990. J Clim 5:858–866Google Scholar
  160. Spencer RW, Christy JR, Braswell WD, Norris WB (2006) Estimation of tropospheric temperature trends from MSU channels 2 and 4. J Atmos Oceanic Technol 23:417–423Google Scholar
  161. Stammerjohn SE, Martinson DG, Smith RC et al (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–southern oscillation and southern annular mode variability. J Geophys Res 113:C03S90. doi: 10.1029/2007JC004269
  162. Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric For Meteorol 107(4):255–278Google Scholar
  163. Stanhill G, Cohen S (2009) Is solar dimming global or urban? Evidence from measurements in Israel between 1954 and 2007. J Geophys Res-Atmos 114:D00D17. doi: 10.1029/2009JD011976
  164. Stephens G (2003) Presentation at meeting of committee on climate data records from NOAA operational satellites. National Research CouncilGoogle Scholar
  165. Stephens G et al (2002) The CloudSat mission and the A-Train. Bull Am Meteorol Soc 83:1771–1790Google Scholar
  166. Stephens GL (1978) Radiation profiles in extended water clouds, II, parameterization schemes. J Atmos Sci 35:2123–2132Google Scholar
  167. Stephens GL, Ackerman S, Smith EA (1984) A shortwave parameterization revised to improve cloud absorption. J Atmos Sci 41(4):687–690Google Scholar
  168. Sturm M, Racine C, Tape K (2001) Increasing shrub abundance in the Arctic. Nature 411:547–548Google Scholar
  169. Tarnavsky EV, Garrigues S, Brown ME (2008) Multiscale geostatistical analysis of AVHRR SPOT-VGT and MODIS NDVI products. Remote Sens Environ 112(2):535–549Google Scholar
  170. Tegen I, Hollrig P, Chin M et al (1997) Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J Geophys Res 102(D20):23895–23915Google Scholar
  171. Temimi M, Romanov P, Ghedira H et al (2011) Sea-ice monitoring over the Caspian Sea using geostationary satellite data. Int J Remote Sens 32(6):1575–1593Google Scholar
  172. Thorne PW, Lanzante JR, Peterson TC, Seidel DJ, Shine KP (2011) Tropospheric temperature trends: history of an ongoing controversy. WIREs Clim Change 2:66–88Google Scholar
  173. Thorne PW, Parker DE, Tett SFB, Jones PD, McCarthy M, Coleman H, Brohan P (2005) Revisiting radiosonde upper-air temperatures from 1958 to 2002. J Geophys Res 110:D18105. doi: 10.1029/2004JD005753 Google Scholar
  174. Trenberth KE, Hurrell JW (1997) How accurate are satellite “thermometers”. Nature 389:342–343Google Scholar
  175. Tucker CJ, Pinzon JE, Brown ME, Slayback DA et al (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26(20):4485–4498Google Scholar
  176. Tucker CJ, Vanpraet C, Sharman MI, Van Ittersum G (1985) Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sens Environ 14:233–249Google Scholar
  177. Turk FJ, Miller SD (2005) Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Trans Geosci Remote Sens 43:1059–1069Google Scholar
  178. Uppala SM et al (2005) The ERA-40 re-analysis. Q J Royal Meteorol Soc 131:2961–3012Google Scholar
  179. van Mantgem PJ, Stephenson NL, Byrne JC et al (2009) Widespread increase of tree mortality rates in the western United States. Science 323:521–524Google Scholar
  180. Verbyla D (2011) Browning boreal forests of western North America. Environ Res Lett 6:041003, 3Google Scholar
  181. Vicente GA, Scofield RA, Menzel WP (1998) The operational GOES infrared rainfall estimation technique. Bull Am Meteorol Soc 79:1883–1898Google Scholar
  182. Vila D, Ferraro RR, Joyce R (2007) Evaluation and improvement of AMSU precipitation retrievals. J Geophys Res 112:D20119. doi: 10.1029/2007JD008617 Google Scholar
  183. Vinnikov KY, Cavalieri DJ, Parkinson CL (2006a) A model assessment of satellite observed trends in polar sea ice extents. Geophys Res Lett 33:L05704. doi: 10.1029/2005GL025282 Google Scholar
  184. Vinnikov KY, Grody NC (2003) Global warming trend of mean tropospheric temperature observed by satellites. Science 302:269–272Google Scholar
  185. Vinnikov KY, Grody NC, Robock A et al (2006b) Temperature trends at the surface and in the troposphere. J Geophys Res 111:D03106. doi: 10.1029/2005JD006392 Google Scholar
  186. Vinnikov KY, Robock A, Stouffer RJ et al (1999) Global warming and Northern Hemisphere sea ice extent. Science 286:1934–1937Google Scholar
  187. Vose RS, Schmoyer RL, Steurer PM et al (1992) The global historical climatology network: long-term monthly temperature precipitation sea-level pressure and station pressure data. Rep ORNL/CDIAC-53 Carbon Dioxide, p 25. Information Analysis Center Oak Ridge National Laboratory, Oak Ridge [Available from Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory, Oak Ridge]Google Scholar
  188. Walker AE, Goodison BE (1993) Discrimination of a wet snow cover using passive microwave satellite data. Ann Glaciol 17:307–311Google Scholar
  189. Wang L, Zou CZ, Qain H (2012) Construction of stratospheric temperature data records from stratospheric sounding units. J Clim 25:2931–2946. doi:http://dx.doi.org/10.1175/JCLI-D-11-00350.1 Google Scholar
  190. Wang M, Overland JE (2004) Detecting Arctic climate change using Koppen climate classification. Climatic Change 67:43–62Google Scholar
  191. Wang NC, Liu C, Ferraro R (2009) The TRMM 2A12 land precipitation product—status and future plans. J Meteorol Soc Japan 87:237–253Google Scholar
  192. Wang XH, Piao SL, Ciais P et al (2011) Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc Nat Acad Sci USA (PNAS) 108(4):1240–1245. doi: 10.1073/pnas1014425108 Google Scholar
  193. WCP-55 (1983) World climate research report of the experts meeting on aerosols and their climatic effects. Williamsburg, Virginia, 28–30 MarchGoogle Scholar
  194. Weatherhead EC, Andersen SB (2006) The search for signs of recovery of the ozone layer. Nature 441:39–45. doi: 10.1038/nature04746 Google Scholar
  195. Weatherhead EC, Reinsel GC, Tiao GC et al (1998) Factors affecting the detection of trends: statistical considerations and applications to environmental data. J Geophys Res-Atmos 103(D14):17149–17161Google Scholar
  196. Weatherhead EC, Stevermer AJ, Schwartz BE (2002) Detecting environmental changes and trends. Phys Chem Earth 27:399–403Google Scholar
  197. Wentz FJ, Schabel M (1998) Effects of satellite orbital decay on MSU lower tropospheric temperature trends. Nature 394:661–664Google Scholar
  198. Whitlock CH, Charlock TP, Staylor WF et al (1995) First gobal WCRP shortwave surface radiation budget dataset. Bull Am Meteorol Soc 76(6):905–922Google Scholar
  199. Wild M, Gilgen H, Roesch A et al (2005) From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308(5723):847–850Google Scholar
  200. Wilheit TT, Kummerow C, Ferraro R (2003) Rainfall algorithms for AMSR-E. IEEE Trans Geosci Remote Sens 41:204–214Google Scholar
  201. Willson RC, Mordvinov AV (2003) Secular total solar irradiance trend during solar cycles 21–23. Geophys Res Lett 30(5):1199. doi: 10.1029/2002gl016038 Google Scholar
  202. Wiscombe WJ (1977) The delta-Eddington approximation for a vertically inhomogeneous atmosphere. NCAR technical note TN-121+STRGoogle Scholar
  203. Woodley WL, Sancho R (1971) A first step towards rainfall estimation from satellite cloud photographs. Weather 26:279–289Google Scholar
  204. Wylie D, Jackson DL, Menzel WP, Bates JJ (2005) Trends in global cloud cover in two decades of HIRS observations. J Clim 18:3021–3031Google Scholar
  205. Xie P, Arkin PA (1997) Global pentad precipitation analysis based on gauge observations satellite estimates and model outputs. In: Extended abstracts American geophysical union 1997 fall meeting San Francisco CA AGUGoogle Scholar
  206. Xie PJ, Janowiak P, Arkin R et al (2003) GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. J Clim 16:2197–2214Google Scholar
  207. Xu L, Myeni RB, Chapin FS III et al (2013) Temperature and vegetation seasonality diminishment over northern lands. Nat Clim Change. doi: 10.1038/nclimate1836 Google Scholar
  208. Yang ES, Cunnold DM, Salawitch RJ, McCormick MP, Russell J III, Zawodny JM, Oltmans S, Newchurch MJ (2006) Attribution of recovery in lower-stratospheric ozone. J Geophys Res 111:D17309. doi: 10.1029/2005JD006371 Google Scholar
  209. Zhao H, Fernandes R (2009) Daily snow cover estimation from advanced very high resolution radiometer polar pathfinder data over Northern Hemisphere land surfaces during 1982–2004. J Geophys Res 114:D05113. doi: 10.1029/2008JD011272 Google Scholar
  210. Zhao H, Fernandes R (2010) Variability of Northern Hemisphere spring snowmelt dates using the AVHRR polar pathfinder snow cover during 1982–2004. In: Chuvieco E (ed) Advances in earth observation of global change, pp 96–110Google Scholar
  211. Zhao L, Weng F (2002) Retrieval of ice cloud parameters using the AMSU. J Appl Meteorol 41:384–395Google Scholar
  212. Zhou LM, Tucker CJ, Kaufmann RK et al (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophysiol Res 106:20069–20083Google Scholar
  213. Zou CZ, Gao M, Goldberg MD (2009) Error structure and atmospheric temperature trends in observations from the microwave sounding unit. J Clim 22:1661–1681Google Scholar
  214. Zou CZ, Goldberg MD, Cheng Z, Grody NC, Sullivan J, Cao C, Tarpley D (2006) Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J Geophys Res 111:D19114. doi: 10.1029/2005JD006798 Google Scholar
  215. Zou CZ, Wang W (2010) Stability of the MSU-derived atmospheric temperature trend. J Atmos Oceanic Technol 27:1960–1971Google Scholar
  216. Zou CZ, Wang W (2011) Inter-satellite calibration of AMSU-A observations for weather and climate applications. J Geophys Res 116:D23113. doi: 10.1029/2011JD016205 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • George Ohring
    • 1
    Email author
  • Peter Romanov
    • 2
  • Ralph Ferraro
    • 1
  • Andrew Heidinger
    • 3
  • Istvan Laszlo
    • 1
  • Cheng-Zhi Zou
    • 1
  • Mike Foster
    • 4
  1. 1.National Oceanic and Atmospheric AdministrationNational Environmental Satellite, Data, and Information Service, Center for Satellite Applications and ResearchCollege ParkUSA
  2. 2.City University of New YorkNew YorkUSA
  3. 3.National Oceanic and Atmospheric AdministrationNational Environmental Satellite, Data, and Information Service, Center for Satellite Applications and ResearchMadisonUSA
  4. 4.University of WisconsinMadisonUSA

Personalised recommendations