A Novel Improved Discrete ABC Algorithm for Manpower Scheduling Problem in Remanufacturing

  • Debabrota Basu
  • Shantanab Debchoudhury
  • Kai-Zhou Gao
  • Ponnuthurai Nagaratnam Suganthan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8297)


Remanufacturing technique is a widely used approach in modern industries. But the very first step of this technique is disassembling. This disassembling operation requires an efficient employee pool and their allocation to several steps of disassembling. In this paper, we have proposed a improved ABC algorithm that can be used to solve the manpower scheduling problem for the disassembling operation in remanufacturing industry. We test this algorithm on several instances along with some existing state-of-art algorithms. The results prove the efficiency of this algorithm to solve manpower scheduling problem in remanufacturing.


Remanufacturing Man-power scheduling Artificial Bee Colony algorithm ID-ABC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    The Remanufacturing institute, link:
  3. 3.
  4. 4.
    Lau, H.C.: On the complexity of manpower scheduling. Computers Ops. Res. 23(1), 93–102 (1996)CrossRefzbMATHGoogle Scholar
  5. 5.
    Shahrezaei, P.S., Moghaddam, R.T., Kazemipoor, H.: Solving a multi-objective multi-skilled manpower scheduling model by a fuzzy goal programming approach. Applied Mathematical Modelling 37, 5424–5443 (2013)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Pan, Q.K., Suganthan, P.N., Chua, T.J., Cai, T.X.: Solving manpower scheduling problem in manufacturing using mixed-integer programming with a two-stage heuristic algorithm. Int. J. Adv. Manuf. Technol. 46, 1229–1237 (2010)CrossRefGoogle Scholar
  7. 7.
    Joseph, A., Egon, B., Daniel, Z.: The Shifting Bottleneck Procedure for Job-shop Scheduling. Management Science 34(3) (March 1988) (printed in USA)Google Scholar
  8. 8.
    Goldberg, D.E.: Genetic Algorithms in search. Addison-Wesley (1994)Google Scholar
  9. 9.
    Ho, S.C., Leung, J.M.Y.: Solving a manpower scheduling problem for airline catering using metaheuristics. European Journal of Operational Research 202, 903–921 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Karaboga, D., Basturk, B.: A powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm. Journal of Global Optimization 39(3), 459–471 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Li, J., Pan, Q., Xie, S., Wang, S.: A hybrid artificial bee colony algorithm for flexible job shop scheduling problems. Int. J. of Computers, Communications & Control  VI(2), 286–296 (2011)Google Scholar
  12. 12.
    Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 1–37 (2012)Google Scholar
  13. 13.
    Li, L., Cheng, Y., Tan, L., Niu, B.: A Discrete Artificial Bee Colony Algorithm for TSP Problem. In: Huang, D.-S., Gan, Y., Premaratne, P., Han, K. (eds.) ICIC 2011. LNCS, vol. 6840, pp. 566–573. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Jacobs, L.W., Brusco, M.J.: A local search heuristic for large set-covering problems. Naval Research Logistics Quarterly 42(7), 1129–1140 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Nawaz, M., Enscore Jr., E.E., Ham, I.A.: Heuristic algorithm for the m-machine, n-job flow shop sequencing problem. OMEGA 11(1), 91–95 (1983)CrossRefGoogle Scholar
  16. 16.
    Ruben, R., Stutzle, T.: An iterated greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives. Eur. J. Oper. Res. 187, 1143–1159 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186, 311–338 (2000)CrossRefzbMATHGoogle Scholar
  18. 18.
    Geraldi, J., Lechter, T.: Gantt charts revisited: A critical analysis of its roots and implications to the management of projects today. International Journal of Managing Projects in Business 5(4), 578–594 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Debabrota Basu
    • 1
  • Shantanab Debchoudhury
    • 1
  • Kai-Zhou Gao
    • 2
  • Ponnuthurai Nagaratnam Suganthan
    • 2
  1. 1.Dept. of Electronics & Telecommunication EngineeringJadavpur UniversityKolkataIndia
  2. 2.School of EEENanyang Technological UniversitySingapore

Personalised recommendations