Advertisement

Cuckoo Search Algorithm for the Mobile Robot Navigation

  • Prases Kumar Mohanty
  • Dayal R. Parhi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8297)

Abstract

The shortest/optimal path planning is essential for efficient operation of autonomous vehicle. In this paper a cuckoo search based approach has been implemented for mobile robot navigation in an unknown environment populated by a variety of obstacles. This metaheuristic algorithm is based on the levy flight behavior and brood parasitic behavior of cuckoos. A new objective function has been developed between robot and position of the goal and obstacles present in the environment. Depending upon the objective function value of each nest in swarm, the robot avoids obstacles and proceeds towards goal. The optimal path is generated with this algorithm when robot reaches its goal. Several simulation results are presented here to demonstrate the potential of proposed algorithm.

Keywords

Cuckoo search Levy flight Mobile robot path planning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, New York (1990)Google Scholar
  2. 2.
    Canny, J.E.: The Complexity of Robot Motion Planning. MIT Press, Cambridge (1988)Google Scholar
  3. 3.
    Lozano-Perez, T.: A simple motion planning algorithm for general robot manipulators. IEEE Journal of Robotics and Automation 3, 224–238 (1987)CrossRefGoogle Scholar
  4. 4.
    Leven, D., Sharir, M.: Planning a purely translational motion for a convex object in two dimensional space using generalized voronoi diagrams. Discrete & Computational Geometry 2, 9–31 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Payton, D., Rosenblatt, J., Keirsey, D.: Grid- based mapping for autonomous mobile robot. Robotics and Autonomous Systems 11, 13–21 (1993)CrossRefGoogle Scholar
  6. 6.
    Regli, L.: Robot Lab: Robot Path Planning. Lectures Notes of Department of computer Science. Drexel University (2007)Google Scholar
  7. 7.
    Khatib, O.: Real time Obstacle Avoidance for manipulators and Mobile Robots. In: IEEE Conference on Robotics and Automation, vol. 2, pp. 505–505 (1985)Google Scholar
  8. 8.
    Fujimura, K.: Motion Planning in Neritic Environments. Springer (1991)Google Scholar
  9. 9.
    Ibrahim, M.Y., Fernandes, A.: Study on Mobile Robot Navigation Techniques. In: IEEE International Conference on Industrial Technology, vol. 1, pp. 230–236 (2004)Google Scholar
  10. 10.
    Castillo, O., Trujillo, L., Melin, P.: Multiple objective genetic algorithms for path-planning optimization in autonomous mobile robots. Soft Computing 11, 269–279 (2007)CrossRefGoogle Scholar
  11. 11.
    Hamdan, M., El-Hawary, M.E.: A novel genetic algorithm searching approach for dynamic constrained multicast routing. In: Proc. IEEE/CCECE, pp. 1127–1130 (2003)Google Scholar
  12. 12.
    Zein-Sabatto, S., Ramakrishnan, R.: Multiple path planning for a group of mobile robots in a 3D environment using genetic algorithms. In: Proc. IEEE Southeast, pp. 359–363 (2002)Google Scholar
  13. 13.
    Qidan, Z., Yongjie, Y., Zhuoyi, X.: Robot Path Planning Based on Artificial Potential Field Approach with Simulated Annealing. In: Proc. ISDA 2006, pp. 622–627 (2006)Google Scholar
  14. 14.
    Park, M.G., Lee, M.C.: Experimental evaluation of robot path planning by artificial potential field approach with simulated annealing. In: Proc. SICE, vol. 4, pp. 2190–2195 (2002)Google Scholar
  15. 15.
    Chen, X., Kong, Y., Fang, X., Wu, Q.: A fast two-stage ACO algorithm for robotic path planning. Neural Computing and Applications 22(2), 313–319 (2013)CrossRefGoogle Scholar
  16. 16.
    Shirong, L., Linbo, M., Jinshou, Y.: Path Planning Based on Ant Colony Algorithm and Distributed Local Navigation for Multi-Robot Systems. In: Proc. IEEE Int. Conf. on Mechatronics and Automation, pp. 1733–1738 (2006)Google Scholar
  17. 17.
    Liu, C., Gao, Z., Zhao, W.: A New Path Planning Method Based on Firefly Algorithm. In: Fifth International Joint Conference on Computational Sciences and Optimization, pp. 775–778 (2012)Google Scholar
  18. 18.
    Zhang, Y., Gong, D.W., Zhang, J.H.: Robot path planning in uncertain environment using multi-objective particle swarm optimization. Neuro-Computing 103, 172–185 (2013)Google Scholar
  19. 19.
    Tang, Q., Eberhard, P.: A PSO-based algorithm designed for a swarm of mobile robots. Structural and Multidisciplinary Optimization 44, 483–498 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Saska, M., Macas, M., Preucil, L., Lhotska, L.: Robot Path Planning using Particle Swarm Optimization of Ferguson Splines. In: Proc. IEEE/ETFA, pp. 833–839 (2006)Google Scholar
  21. 21.
    Yang, X.S., Deb, S.: Cuckoo Search via Levy Flights. In: Proc. of World Congress on Nature & Biologically Inspired Computing, pp. 210–214 (2009)Google Scholar
  22. 22.
    Deb, S.: Engineering Optimisation by Cuckoo Search. International Journal of Mathematical Modelling and Numerical Optimisation 3, 330–343 (2010)Google Scholar
  23. 23.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2010)Google Scholar
  24. 24.
    Yang, X.S., Deb, S.: Cuckoo search: recent advances and applications. Neural Computing and Application (2013), doi:10.1007/s00521-013-1367-1Google Scholar
  25. 25.
    Yang, X.S., Deb, S.: Discrete Cuckoo search algorithm for the travelling salesman problem. Neural Computing and Application (2013), doi:10.1007/s00521-013-1402-2Google Scholar
  26. 26.
    Rakshit, P., Konar, A., Bhowmik, P., Goswami, I., Das, S., Jain, L.C., Nagar, A.K.: Realization of an Adaptive Memetic Algorithm Using Differential Evolution and Q-Learning: A Case Study in Multi-robot Path Planning. IEEE T. Systems, Man, and Cybernetics: Systems 43(4), 814–831 (2013)CrossRefGoogle Scholar
  27. 27.
    Panda, R., Agrawal, S., Bhuyan, S.: Edge Magnitude based Multilevel Thresholding using Cuckoo Search Technique. Expert Systems with Applications 40(18), 7617–7628 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Prases Kumar Mohanty
    • 1
  • Dayal R. Parhi
    • 1
  1. 1.Robotics Laboratory,Department of Mechanical EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations