Advertisement

Automatic 3D Prostate MR Image Segmentation Using Graph Cuts and Level Sets with Shape Prior

  • Wei Xiong
  • Anthony Lianjie Li
  • Sim Heng Ong
  • Ying Sun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8294)

Abstract

Automatic segmentation for 3D magnetic resonance images of the prostate is a challenging task due to its varying shapes and sizes. Most recent techniques are focused on using variations of the Active Appearance Model (AAM) approach as the main segmentation method. In this paper, an alternative approach using a hybrid of the graph cut technique and the geodesic active contour shape prior level set method is presented. Despite being relatively accurate, level set methods are not commonly used for 3D segmentation purposes because they are computationally expensive. This paper shows that, with 3D graph cut results as initialization for level sets, the processing time for such level set based methods can be substantially reduced while preserving the accuracy of the segmentation.

Keywords

prostate segmentation level set graph cut MRI images 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cancer Facts and Figures 2012, American Cancer Society, Atlanta, pp. 19–20 (2012), http://www.cancer.org
  2. 2.
    Yan, P., Xu, S., Turkbey, B., Kruecker, J.: Discrete “Deformable Model Guided by Partial Active Shape Model for TRUS Image Segmentation.”. IEEE Transactions on Biomedical Engineering 57, 1158–1166 (2010)CrossRefGoogle Scholar
  3. 3.
    Villeirs, G.M., Verstraete, K.L., DeNeve, W., et al.: Magnetic Resonance Imaging Anatomy of the Prostate and Per-Prostatic Area: a guide for radiotherapists. Radiotherapy Oncology, 99–106 (2005)Google Scholar
  4. 4.
    Lee, Y.K., Bollet, M., Charles-Edward, C., et al.: Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiotherapy Oncology 66, 203–216 (2003)CrossRefGoogle Scholar
  5. 5.
    Cootes, T.F., Petrovi, C.V., Schestowitz, R., Taylor, C.: GroupWise construction of appearance models using piece-wise affine deformations. In: 16th British Machine Vision Conference, vol. 2, pp. 879–888 (2005)Google Scholar
  6. 6.
    Ghose, S., Oliver, A., Martí, R., Lladó, X., Freixenet, J., Mitra, J., Vilanova, J.C., Comet, J., Meriaudeau, F.: Multiple mean models of statistical shape and probability priors for automatic prostate segmentation. In: Madabhushi, A., Dowling, J., Huisman, H., Barratt, D. (eds.) Prostate Cancer Imaging 2011. LNCS, vol. 6963, pp. 35–46. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Samiee, M., Thomas, G., Fazel-Rezai, R.: Semi-Automatic Prostate Segmentation of MR Images Based on Flow Orientation. In: IEEE International Symposium on Signal Processing and Information Technology, pp. 203–207. IEEE Computer Society Press, USA (2006)Google Scholar
  8. 8.
    Dowling, J., Fripp, J., Chandra, S., Pluim, J.P.W., Lambert, J., Parker, J., Denham, J., Greer, P.B., Salvado, O.: Fast automatic multi-atlas segmentation of the prostate from 3d mr images. In: Madabhushi, A., Dowling, J., Huisman, H., Barratt, D. (eds.) Prostate Cancer Imaging 2011. LNCS, vol. 6963, pp. 10–21. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Vincent, G., Guillard, G., Bowers, M.: Fully Automated Segmentation of the Prostate using Active Appearance Models. In: MICCAI, United Kingdoms (2012)Google Scholar
  10. 10.
    Boykov, Y.: Graph Cuts and Efficient N-D Image Segmentation. International Journal of Computer Vision (2006)Google Scholar
  11. 11.
    Osher, S., Sethian, J.A.: Fronts Propagating With Curvature-Dependent Speed: Algorithms based on Hamilton-Jacobi Formulation. Journal of Computational Physics 79, 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 316–323 (2000)Google Scholar
  13. 13.
    Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide, 2nd edn. (2012), http://www.itk.org/ItkSoftwareGuide.pdf
  14. 14.
    Doria, D., Chen, S.: Interactive Image Graph Cut Segmentation, Release 0.0 (November 2012), https://github.com/daviddoria/InteractiveImageGraphCutSegmentation
  15. 15.
    MICCAI 2012 Database, Promise 12 Grand Challenge 2012 (2012), http://promise12.grand-challenge.org/
  16. 16.
    Archip, N., Clatz, O., Whalen, S., Kacher, D., Fedorov, A., Chrisochoides, A.N., Jolesz, F., Golby, A., Black, P., Warfield, S.: Non-rigid alignment of preoperative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. NeuroImage 35(2), 609–624 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Wei Xiong
    • 1
  • Anthony Lianjie Li
    • 2
  • Sim Heng Ong
    • 2
  • Ying Sun
    • 2
  1. 1.Institute for Infocomm ResearchSingapore
  2. 2.National University of SingaporeSingapore

Personalised recommendations