Temporal Analysis of User Behavior and Topic Evolution on Twitter

  • Mona Jain
  • S. Rajyalakshmi
  • Rudra M. Tripathy
  • Amitabha Bagchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8302)


We investigate the temporal aspects of user behavior in this paper and relate it to the evolution of particular topics being discussed on the Twitter OSN. Studies have shown that a small number of frequent users are responsible for the maximum percentage of tweets. We further hypothesize that users deviate from their usual tweeting hours when a major event occurs. With these as our underlying concepts, we introduce a new metric called “tweet strength” that gives more weight to tweets by users who in general tweet less or those who do not usually tweet at a given time. We study the evolution of a set of topics through the lens of tweet strength and try to identify the classes of users driving the popularity at different times. We also study word-of-mouth diffusion mechanism through the network by defining a “copying” behavior. When a follower of a user tweets on the same topic as the user, the follower is said to have copied. We further make the definition time-dependent by imposing temporal thresholds on it.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cheng, A., Evans, M., Singh, H.: Inside Twitter: An In-Depth Look Inside the Twitter World. Technical report, Sysomos Inc. (2009)Google Scholar
  2. 2.
    Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information diffusion through blogspace. In: Proceedings of the 13th International Conference on World Wide Web, WWW 2004, pp. 491–501. ACM, New York (2004)Google Scholar
  3. 3.
    Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 177–186. ACM, New York (2011)Google Scholar
  4. 4.
    Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 497–506. ACM (2009)Google Scholar
  5. 5.
    Nahon, K., Hemsley, J., Walker, S., Hussain, M.: Blogs: spinning a web of virality. In: Proceedings of the 2011 iConference, iConference 2011, pp. 348–355. ACM, Seattle (2011)Google Scholar
  6. 6.
    Crane, R., Sornette, D.: Robust dynamic classes revealed by measuring the response function of a social system. PNAS 105(41), 15649–15653 (2008)CrossRefGoogle Scholar
  7. 7.
    Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring User Influence in Twitter: The Million Follower Fallacy. In: Proceedings of the 4th International AAAI Conference on Weblogs and Social Media, ICWSM 2010 (2010)Google Scholar
  8. 8.
    Galuba, W., Aberer, K., Chakraborty, D., Despotovic, Z., Kellerer, W.: Outtweeting the Twitterers - predicting information cascades in microblogs. In: Proceedings of the 3rd Conference on Onsline Social Networks, WOSN 2010 (2010)Google Scholar
  9. 9.
    Sousa, D., Sarmento, L., Mendes Rodrigues, E.: Characterization of the Twitter @replies network: are user ties social or topical? In: Proceedings of the 2nd International Workshop on Search and Mining User-Generated Contents, SMUC 2010, pp. 63–70. ACM, Toronto (2010)Google Scholar
  10. 10.
    Yang, J., Counts, S.: Predicting the Speed, Scale, and Range of Information Diffusion in Twitter. In: 4th International AAAI Conference on Weblogs and Social Media, ICWSM (2010)Google Scholar
  11. 11.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 591–600. ACM, New York (2010)CrossRefGoogle Scholar
  12. 12.
    Asur, S., Huberman, B.A., Szabo, G., Wang, C.: Trends in Social Media: Persistence and Decay. Proceedings of the 5th International AAAI Conference on Weblogs and Social Media, ICWSM 2011 (2011)Google Scholar
  13. 13.
    Welch, M.J., Schonfeld, U., He, D., Cho, J.: Topical semantics of Twitter links. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining (2011)Google Scholar
  14. 14.
    Rodrigues, T., Benvenuto, F., Cha, M., Gummadi, K.P., Almeida, V.: On word-of-mouth based discovery of the web. In: Proceedings of the 2011 Internet Measurement Conference, IMC 2011 (2011)Google Scholar
  15. 15.
    Kossinets, G., Kleinberg, J., Watts, D.: The structure of information pathways in a social communication network. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2008)Google Scholar
  16. 16.
    Lerman, K., Ghosh, R.: Information Contagion: An Empirical Study of the Spread of News on Digg and Twitter Social Networks. In: Proceedings of the 14th International AAAI Conference on Weblogs and Social Media, AAAI 2010. ACM, Atlanta (2010)Google Scholar
  17. 17.
    Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on Twitter. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, Hyderabad, India, pp. 695–704 (2011)Google Scholar
  18. 18.
    Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.: Characterizing user behavior in online social networks. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference (2009)Google Scholar
  19. 19.
    Cheong, M., Lee, V.: A Study on Detecting Patterns in Twitter Intra-topic User and Message Clustering. In: 20th International Conference on Pattern Recognition, ICPR (2010)Google Scholar
  20. 20.
    Abel, F., Gao, Q., Houben, G.J., Tao, K.: Analyzing Temporal Dynamics in Twitter Profiles for Personalized Recommendations in the Social Web. In: Proceeding of the 3rd International Conference on Web Science, WebSci 2011 (2011)Google Scholar
  21. 21.
    Ruhela, A., Tripathy, R.M., Triukose, S., Ardon, S., Bagchi, A., Seth, A.: Towards the use of Online Social Networks for Efficient Internet Content Distribution. In: Proceedings of the Fifth International Conference on Advanced Networks and Telecommunication Systems, ANTS 2011. IEEE, Bangalore (2011)Google Scholar
  22. 22.
    OpenCalais: OpenCalais (2011), (accessed October 28, 2011)

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Mona Jain
    • 1
  • S. Rajyalakshmi
    • 3
  • Rudra M. Tripathy
    • 2
  • Amitabha Bagchi
    • 1
  1. 1.Indian Institute of TechnologyDelhiIndia
  2. 2.Silicon Institute of TechnologyBhubaneswarIndia
  3. 3.UnaffiliatedIndia

Personalised recommendations