Some Complexity Results for Distance-Based Judgment Aggregation

  • Wojciech Jamroga
  • Marija Slavkovik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8272)

Abstract

Judgment aggregation is a social choice method for aggregating information on logically related issues. In distance-based judgment aggregation, the collective opinion is sought as a compromise between information sources that satisfies several structural properties. It would seem that the standard conditions on distance and aggregation functions are strong enough to guarantee existence of feasible procedures. In this paper, we show that it is not the case, though the problem becomes easier under some additional assumptions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartholdi, J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare 6, 157–165 (1989)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baumeister, D., Erdélyi, G., Erdélyi, O.J., Rothe, J.: Control in judgment aggregation. In: Proceedings of the 6th European Starting AI Researcher Symposium, pp. 23–34 (2012)Google Scholar
  3. 3.
    Baumeister, D., Erdélyi, G., Erdélyi, O.J., Rothe, J.: Computational aspects of manipulation and control in judgment aggregation. In: Proceedings of the 3rd International Conference on Algorithmic Decision Theory, ADT 2013 (forthcomming, 2013)Google Scholar
  4. 4.
    Baumeister, D., Erdélyi, G., Rothe, J.: How hard is it to bribe the judges? A study of the complexity of bribery in judgment aggregation. In: Brafman, R., Roberts, F.S., Tsoukiàs, A. (eds.) ADT 2011. LNCS, vol. 6992, pp. 1–15. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Bulling, N., Farwer, B.: On the (un-)decidability of model checking resource-bounded agents. In: Proceedings of ECAI. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 567–572. IOS Press (2010)Google Scholar
  6. 6.
    Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A short introduction to computational social choice. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 51–69. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Conitzer, V., Sandholm, T.: Complexity of manipulating elections with few candidates. In: Proceedings of AAAI 2002, pp. 314–319. American Association of Artificial Intelligence (2002)Google Scholar
  8. 8.
    Conitzer, V., Sandholm, T.: Communication complexity of common voting rules. In: Proceedings of the ACM Conference on Electronic Commerce, pp. 78–87 (2005)Google Scholar
  9. 9.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics 38(2) (1967)Google Scholar
  10. 10.
    Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer (2009)Google Scholar
  11. 11.
    Dietrich, F.: A generalised model of judgment aggregation. Social Choice and Welfare 28(4), 529–565 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dietrich, F.: Judgment aggregation by quota rules majority voting generalized. Journal of Theoretical Politics 19(4), 391–424 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dietrich, F.: Scoring rules for judgment aggregation. Social Choice and Welfare (to appear, 2013)Google Scholar
  14. 14.
    Dietrich, F., Mongin, P.: The premiss-based approach to judgment aggregation. Journal of Economic Theory 145(2), 562–582 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dima, C., Tiplea, F.L.: Model-checking atl under imperfect information and perfect recall semantics is undecidable. CoRR, abs/1102.4225 (2011)Google Scholar
  16. 16.
    Dokow, E., Holzman, R.: Aggregation of binary evaluations with abstentions. Journal of Economic Theory 145(2), 544–561 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Duddy, C., Piggins, A.: Many-valued judgment aggregation: Characterizing the possibility/impossibility boundary. Journal of Economic Theory 148(2), 793–805 (2013)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Eckert, D., Klamler, C., Mitlöhner, J., Schlötterer, C.: A distance-based comparison of basic voting rules. Central European Journal of Operations Research 14(4), 377–386 (2006)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Eckert, D., Mitlöhner, J.: Logical representation and merging of preference information. In: Proceedings of the IJCAI 2005 Multidisciplinary Workshop on Preference Handling (2005)Google Scholar
  20. 20.
    Endriss, U., Grandi, U., Porello, D.: Complexity of judgment aggregation: Safety of the agenda. In: Proceedings of AAMAS 2010, pp. 359–366 (2010)Google Scholar
  21. 21.
    Endriss, U., Grandi, U., Porello, D.: Complexity of winner determination and strategic manipulation in judgment aggregation. In: Proceedings of COMSOC 2010 (2010)Google Scholar
  22. 22.
    Endriss, U., Grandi, U., Porello, D.: Complexity of judgment aggregation. Journal of Artificial Intelligence Research 45, 481–514 (2012)MathSciNetMATHGoogle Scholar
  23. 23.
    Escoffier, B., Lang, J., Öztürk, M.: Single-peaked consistency and its complexity. In: Proceedings of ECAI 2008, pp. 366–370. IOS Press (2008)Google Scholar
  24. 24.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press (1995)Google Scholar
  25. 25.
    Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press (2009)Google Scholar
  26. 26.
    Grossi, D.: Correspondences in the theory of aggregation. In: Bonanno, G., Löwe, B., van der Hoek, W. (eds.) LOFT 2008. LNCS, vol. 6006, pp. 34–60. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of kemeny elections. Theoretical Computer Science 349(3), 382–391 (2005)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Konieczny, S., Lang, J., Marquis, P.: Distance-based merging: A general framework and some complexity results. In: Proceedings of KR 2002, pp. 97–108 (2002)Google Scholar
  29. 29.
    Lang, J., Pigozzi, G., Slavkovik, M., van der Torre, L.: Judgment aggregation rules based on minimization. In: Proceedings of TARK, pp. 238–246 (2011)Google Scholar
  30. 30.
    Lang, J., Slavkovik, M.: Judgment aggregation rules and voting rules. In: Perny, P., Pirlot, M., Tsoukiás, A. (eds.) ADT 2013. LNCS, vol. 8176, pp. 230–243. Springer, Heidelberg (2013)Google Scholar
  31. 31.
    Li, N.: Decision paths in sequential non-binary judgment aggregation. Technical report, Universitat Autònoma de Barcelona (2010)Google Scholar
  32. 32.
    List, C., Pettit, P.: Aggregating sets of judgments: An impossibility result. Economics and Philosophy 18(01), 89–110 (2002)Google Scholar
  33. 33.
    List, C., Polak, B.: Introduction to judgment aggregation. Journal of Economic Theory 145(2), 441–466 (2010)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Miller, M.K., Osherson, D.: Methods for distance-based judgment aggregation. Social Choice and Welfare 32(4), 575–601 (2009)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Nehring, K., Pivato, M.: Incoherent majorities: The McGarvey problem in judgement aggregation. Discrete Applied Mathematics 159(15), 1488–1507 (2011)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Pauly, M., van Hees, M.: Logical constraints on judgement aggregation. Journal of Philosophical Logic 35(6), 569–585 (2006)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer noncooperative games of incomplete information. Computers and Mathematics with Applications 41(7), 957–992Google Scholar
  38. 38.
    Pigozzi, G.: Belief merging and the discursive dilemma: an argument-based account to paradoxes of judgment aggregation. Synthese 152(2), 285–298 (2006)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)Google Scholar
  40. 40.
    Slavkovik, M., Jamroga, W.: Distance-based judgment aggregation of three-valued judgments with weights. In: Proceedings of the IJCAI Workshop on Social Choice and Artificial IntelligenceGoogle Scholar
  41. 41.
    van der Hoek, W., Verbrugge, R.: Epistemic logic: A survey. Game Theory and Applications 8, 53–94 (2002)Google Scholar
  42. 42.
    Wilson, R.: On the theory of aggregation. Journal of Economic Theory 10(1), 89–99 (1975)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Wojciech Jamroga
    • 1
  • Marija Slavkovik
    • 2
  1. 1.University of LuxembourgLuxembourg
  2. 2.University of BergenNorway

Personalised recommendations