Image Segmentation with Adaptive Sparse Grids

  • Benjamin Peherstorfer
  • Julius Adorf
  • Dirk Pflüger
  • Hans-Joachim Bungartz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8272)


We present a novel adaptive sparse grid method for unsupervised image segmentation. The method is based on spectral clustering. The use of adaptive sparse grids achieves that the dimensions of the involved eigensystem do not depend on the number of pixels. In contrast to classical spectral clustering, our sparse-grid variant is therefore able to segment larger images. We evaluate the method on real-world images from the Berkeley Segmentation Dataset. The results indicate that images with 150,000 pixels can be segmented by solving an eigenvalue system of dimensions 500 × 500 instead of 150, 000 × 150, 000.


sparse grids image segmentation out-of-sample extension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In: Proceedings of the 2001 IEEE International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)Google Scholar
  2. 2.
    Peherstorfer, B., Pflüger, D., Bungartz, H.-J.: A Sparse-Grid-Based Out-of-Sample Extension for Dimensionality Reduction and Clustering with Laplacian Eigenmaps. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS, vol. 7106, pp. 112–121. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    von Luxburg, U.: A Tutorial on Spectral Clustering. Statistics and Computing 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral Grouping Using the Nystrom Method. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 214–225 (2004)CrossRefGoogle Scholar
  5. 5.
    Alzate, C., Suykens, J.A.K.: Multiway Spectral Clustering with Out-of-Sample Extensions through Weighted Kernel PCA. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(2), 335–347 (2010)CrossRefGoogle Scholar
  6. 6.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pflüger, D.: Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr. Hut, München (August 2010)Google Scholar
  9. 9.
    Bengio, Y., Paiement, J.F., Vincent, P.: Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. In: Advances in Neural Information Processing Systems, pp. 177–184. MIT Press (2003)Google Scholar
  10. 10.
    Wu, X.: Efficient Statistical Computations for Optimal Color Quantization. In: Arvo, J. (ed.) Graphics Gems II, pp. 126–133. Academic Press (1991)Google Scholar
  11. 11.
    Adorf, J.: Nonlinear Clustering on Sparse Grids. Studienarbeit/SEP/IDP, Institut für Informatik, Technische Universität München (August 2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Benjamin Peherstorfer
    • 1
  • Julius Adorf
    • 1
  • Dirk Pflüger
    • 2
  • Hans-Joachim Bungartz
    • 1
  1. 1.Department of InformaticsTechnische Universität MünchenGermany
  2. 2.Institute for Parallel and Distributed SystemsUniversity of StuttgartGermany

Personalised recommendations