Growing Neural Gas Video Background Model (GNG-BM)

  • Munir Shah
  • Jeremiah D. Deng
  • Brendon J. Woodford
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8272)

Abstract

This paper presents a novel growing neural gas based background model (GNG-BM) for foreground detection in videos. We proposed a pixel-level background model, where the GNG algorithm is modified for clustering the input pixel data and a new algorithm for initial training is introduced. Also, a new method is introduced for foreground-background classification and online model update. The proposed model is rigorously validated and compared with previous models.

Keywords

Background subtraction online learning growing neural gas video processing and Gaussian mixture model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouwmans, T., Baf, F.E., Vachon, B.: Statistical Background Modeling for Foreground Detection: A Survey, pp. 181–199. World Scientific Publishing (2010)Google Scholar
  2. 2.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and Practice of Background Maintenance. In: Proceedings of the IEEE International Conference on Computer Vision, ICCV 1999, vol. 1, p. 255. IEEE Computer Society (1999)Google Scholar
  3. 3.
    Stauffer, C., Grimson, W.: Adaptive Background Mixture Models for Real-Time Tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1999, vol. 2, pp. 246–252. IEEE Computer Society (1999)Google Scholar
  4. 4.
    KaewTraKulPong, P., Rowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Proceedings of the Second European Workshop on Advanced Video Based Surveillance Systems, pp. 149–158 (2001)Google Scholar
  5. 5.
    Shah, M., Deng, J., Woodford., B.: Enhancing the Mixture of Gaussians background model with local matching and local adaptive learning. In: Proceedings of the 27th Conference on Image and Vision Computing New Zealand (IVCNZ 2012), pp. 103–108. ACM (2012)Google Scholar
  6. 6.
    Heikkila, M., Pietikainen, M.: A Texture-Based Method for Modeling the Background and Detecting Moving Objects. IEEE Transaction on Pattern Analysis and Machine Intelligence 28(4), 657–662 (2006)CrossRefGoogle Scholar
  7. 7.
    Bouwmans, T., Baf, F.E., Vachon, B.: Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey. Recent Patents on Computer Science 1(3), 219–237 (2008)CrossRefGoogle Scholar
  8. 8.
    Fritzke, B.: A Growing Neural Gas Network Learns Topologies. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 625–632. MIT Press (1995)Google Scholar
  9. 9.
    Martinetz, T., Berkovich, S., Schulten, K.: ‘Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks 4(4), 558–569 (1993)CrossRefGoogle Scholar
  10. 10.
    Martinetz, T.: Competitive hebbian learning rule forms perfectly topology preserving maps. In: Proceedings of the International Conference on Artificial Neural Networks (ICANN 1993), pp. 427–434. Springer London (1993)Google Scholar
  11. 11.
    Qin, A.K., Suganthan, P.N.: Robust growing neural gas algorithm with application in cluster analysis. Neural Networks 17(8-9), 1135–1148 (2004)MATHGoogle Scholar
  12. 12.
    Fritzke, B.: A self-organizing network that can follow non-stationary distributions. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 613–618. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Evangelio, R.H., Ptzold, M., Sikora, T.: Splitting Gaussians in Mixture Models. In: Proceedings of the 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance, AVSS 2012, pp. 300–305. IEEE Computer Society (2012)Google Scholar
  14. 14.
    Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE 90(7), 1151–1163 (2002)CrossRefGoogle Scholar
  15. 15.
    Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background Segmentation with Feedback: The Pixel-Based Adaptive Segmenter. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition -Change Detection Workshop, pp. 38–43. IEEE (2012)Google Scholar
  16. 16.
    Goyette, N., Jodoin, P., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: A new change detection benchmark dataset. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) -Workshops, pp. 1–8. IEEE Computer Society (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Munir Shah
    • 1
  • Jeremiah D. Deng
    • 1
  • Brendon J. Woodford
    • 1
  1. 1.Department of Information ScienceUniversity of OtagoDunedinNew Zealand

Personalised recommendations