Topological Height Estimation Using Global Appearance of Images

  • Francisco Amorós
  • Luis Payá
  • Oscar Reinoso
  • Luis Miguel Jiménez
  • Miguel Juliá
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 253)

Abstract

In this work we present a comparison of different methods for topological height estimation applicable in UAVs navigation tasks using omnidirectional images. We take profit of the camera calibration information in oder to obtain different projections of the visual information from the omnidirectional images. The descriptors used to collect the visual information are based on the global appearance of the scenes. We test the algorithms using a real and dealing database.

Keywords

UAV global appearance descriptors zooming omnidirectional image topological navigation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amorós, F., Payá, L., Reinoso, Ó., Mayol-Cuevas, W., Calway, A.: Topological map building and path estimation using global-appearance image descriptors. In: ICINCO (2) (2013)Google Scholar
  2. 2.
    Bonev, B., Cazorla, M., Escolano, F.: Robot navigation behaviors based on omnidirectional vision and information theory. Journal of Physical Agents 1(1), 27–36 (2007)Google Scholar
  3. 3.
    Chang, C.K., Siagian, C., Itti, L.: Mobile robot vision navigation amp; localization using gist and saliency. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4147–4154 (2010)Google Scholar
  4. 4.
    Driscoll, J., Healy, D.: Computing fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics 15(2), 202–250 (1994), http://www.sciencedirect.com/science/article/pii/S0196885884710086 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fernández, L., Payá, L., Valiente, D., Gil, A., Reinoso, Ó.: Monte carlo localization using the global appearance of omnidirectional images - algorithm optimization to large indoor environments. In: ICINCO (2), 439–442 (2012)Google Scholar
  6. 6.
    Han, K., Aeschliman, C., Park, J., Kak, A., Kwon, H., Pack, D.: Uav vision: Feature based accurate ground target localization through propagated initializations and interframe homographies. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 944–950 (2012)Google Scholar
  7. 7.
    Huhle, B., Schairer, T., Schilling, A., Strasser, W.: Learning to localize with gaussian process regression on omnidirectional image data. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5208–5213 (2010)Google Scholar
  8. 8.
    Makadia, A., Sorgi, L., Daniilidis, K.: Rotation estimation from spherical images. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 590–593 (2004)Google Scholar
  9. 9.
    Maohai, L., Han, W., Lining, S., Zesu, C.: Robust omnidirectional mobile robot topological navigation system using omnidirectional vision. Engineering Applications of Artificial Intelligence (2013), http://www.sciencedirect.com/science/article/pii/S0952197613000973
  10. 10.
    McEwen, J., Wiaux, Y.: A novel sampling theorem on the sphere. IEEE Transactions on Signal Processing 59(12), 5876–5887 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Menegatti, E., Maeda, T., Ishiguro, H.: Image-based memory for robot navigation using properties of omnidirectional images. Robotics and Autonomous Systems 47(4), 251–267 (2004)CrossRefGoogle Scholar
  12. 12.
    Mondragón, I.F., Olivares-Méndez, M., Campoy, P., Martínez, C., Mejias, L.: Unmanned aerial vehicles uavs attitude, height, motion estimation and control using visual systems. Autonomous Robots 29(1), 17–34 (2010)CrossRefGoogle Scholar
  13. 13.
    Roebert, S., Schmits, T., Visser, A.: Creating a bird-eye view map using an omnidirectional camera, pp. 233–240 (2008)Google Scholar
  14. 14.
    Scaramuzza, D., Martinelli, A., Siegwart, R.: A flexible technique for accurate omnidirectional camera calibration and structure from motion. In: IEEE International Conference on Computer Vision Systems, ICVS 2006, p. 45 (January 2006)Google Scholar
  15. 15.
    Schairer, T., Huhle, B., Strasser, W.: Increased accuracy orientation estimation from omnidirectional images using the spherical fourier transform. In: 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, pp. 1–4 (2009)Google Scholar
  16. 16.
    Schairer, T., Huhle, B., Vorst, P., Schilling, A., Strasser, W.: Visual mapping with uncertainty for correspondence-free localization using gaussian process regression. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4229–4235 (2011)Google Scholar
  17. 17.
    Valiente, D., Gil, A., Fernández, L., Reinoso, Ó.: View-based slam using omnidirectional images. In: ICINCO (2), pp. 48–57 (2012)Google Scholar
  18. 18.
    Wang, C., Wang, T., Liang, J., Chen, Y., Zhang, Y., Wang, C.: Monocular visual slam for small uavs in gps-denied environments. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 896–901 (2012)Google Scholar
  19. 19.
    Winters, N., Gaspar, J., Lacey, G., Santos-Victor, J.: Omni-directional vision for robot navigation. In: Proceedings of the IEEE Workshop on Omnidirectional Vision, pp. 21–28 (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Francisco Amorós
    • 1
  • Luis Payá
    • 1
  • Oscar Reinoso
    • 1
  • Luis Miguel Jiménez
    • 1
  • Miguel Juliá
    • 1
  1. 1.Departamento de Ingeniería de Sistemas IndustrialesMiguel Hernández UniversityElcheSpain

Personalised recommendations