Reachability and Capability Analysis for Manipulation Tasks

  • Oliver PorgesEmail author
  • Theodoros Stouraitis
  • Christoph Borst
  • Maximo A. Roa
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 253)


An offline analysis of the reachability of a robotic arm saves time for online queries like grasp selection or path planning. Reachability data is complemented with indices that quantify the goodness of one region in space to create a capability map, which can be computed based either on forward or inverse kinematics. This paper discusses the advantages and limitations of those methods, and proposes a hybrid method to improve the generation time while guaranteeing complete exploration of the space. The correctness of the results is studied with a prediction accuracy test. To illustrate the utility of a capability map, real-time visual information is incorporated to the map to help in the selection of grasp poses, or in path planning from an initial to a final pose.


arm dexterity reachability manipulability capability map path planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodenmueller, T.: Streaming Surface Reconstruction from Real Time 3D Measurements. Ph.D. thesis, Technical University of Munich - TUM, Lehrstuhl fuer Reakzeit - Computersysteme (2009)Google Scholar
  2. 2.
    Cohen, B., Sucan, I., Chitta, S.: A generic infrastructure for benchmarking motion planners. In: Proc. IEEE Int. Conf. Robotics and Automation - ICRA, pp. 589–595 (2012)Google Scholar
  3. 3.
    Diankov, R.: Automated Construction of Robotic Manipulation Programs. Ph.D. thesis, Carnegie Mellon University, Robotics Institute (2010)Google Scholar
  4. 4.
    Dragan, A., Ratliff, N., Srinivasa, S.: Manipulation planning with goal sets using constrained optimization trajectory (2011)Google Scholar
  5. 5.
    Guilamo, L., Kuffner, J., Nishikawi, K., Kagami, S.: Efficient prioritized inverse kinematic solutions for redundant manipulators. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems - IROS, pp. 3921–3926 (2005)Google Scholar
  6. 6.
    Kallmann, M., Mataric, M.: Motion planning using dynamic roadmaps. In: Proc. IEEE Int. Conf. Robotics and Automation - ICRA, pp. 4399–4404 (2004)Google Scholar
  7. 7.
    Kee, D., Karwowski, W.: Analytically derived three-dimensional reach volumes based on multijoint movements. Human Factors: The Journal of the Human Factors and Ergonomics Society 44(4), 530–544 (2002)CrossRefGoogle Scholar
  8. 8.
    Ott, C., Eiberger, O., Roa, M.A., Albu-Schaeffer, A.: Hardware and control concept for an experimental bipedal robot with joint torque sensors. Journal of the Robotics Society of Japan 30(4), 378–382 (2012)CrossRefGoogle Scholar
  9. 9.
    Sagardia, M., Hulin, T., Preusche, C., Hirzinger, G.: Improvements of the voxmap-pointshell algorithm - fast generation of haptic data structures. In: Proc. 53rd Int. Wissenschaftliches Kolloquium (2008)Google Scholar
  10. 10.
    Suárez, R., Roa, M.A., Cornellà, J.: Grasp quality measures. Technical University of Catalunya. Technical Report IOC-DT-P-2006-10 (2006)Google Scholar
  11. 11.
    Togai, M.: An application of the singular value decomposition to manipulablity and sensitivity of industrial robots. SIAM Journal of Algebraic and Discrete Methods 7(2), 315–320 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Vahrenkamp, N., Asfour, T., Dillmann, R.: Robot placement based on reachability inversion. In: Proc. IEEE Int. Conf. Robotics and Automation - ICRA, pp. 1962–1967 (2013)Google Scholar
  13. 13.
    Vahrenkamp, N., Asfour, T., Metta, G., Sandini, G., Dillmann, R.: Manipulability analysis. In: Proc. IEEE-RAS Int. Conf. on Humanoid Robots, pp. 568–573 (2012)Google Scholar
  14. 14.
    Zacharias, F.: Knowledge Representations for Planning Manipulation Tasks. Springer, Berlin (2012)CrossRefGoogle Scholar
  15. 15.
    Zacharias, F., Borst, C., Hirzinger, G.: Capturing robot workspace structure: Representing robot capabilities. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems - IROS, pp. 3229–3236 (2007)Google Scholar
  16. 16.
    Zacharias, F., Borst, C., Hirzinger, G.: Online generation of reachable grasps for dexterous manipulation using a representation of the reachable workspace. In: Proc. IEEE Int. Conf. Advanced Robotics, pp. 3229–3236 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Oliver Porges
    • 1
    Email author
  • Theodoros Stouraitis
    • 1
  • Christoph Borst
    • 1
  • Maximo A. Roa
    • 1
  1. 1.Institute of Robotics and MechatronicsGerman Aerospace Center (DLR)WesslingGermany

Personalised recommendations