Advertisement

Pose Estimation of a Mobile Robot Based on Network Sensors Adaptive Sampling

  • Miguel MartínezEmail author
  • Felipe Espinosa
  • Alfredo Gardel
  • Carlos Santos
  • Jorge García
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 253)

Abstract

This paper covers the use of an adaptive sampling strategy on a sensor network for the estimation of the pose of a remotely controlled mobile robot. The more measurements can be taken, the better the estimation becomes, but if some level of uncertainty is tolerable, the amount of measurements can be significantly reduced. The proposed adaptive sampling technique is triggered by the estimation error covariance matrix, computed by Kalman filter algorithms. This sampling strategy leads to the minimum amount of measurements needed to achieve a certain estimation accuracy, reducing the load on important resources such as computational power and network communications. An example of use is given as the pose estimation of a wheeled robot remotely controlled. A network of camera sensors provides pose measurements allowing the application of an Unscented Kalman Filter estimator in the remote centre.

Keywords

Pose Estimation Event Based Estimation Adaptive Sampling Unscented Kalman Filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mallick, M., Coraluppi, S., Carthel, C.: Advances in asynchronous and decentralized estimation. In: IEEE Proceedings of the Aerospace Conference, vol. 4, pp. 4/1873–4/1888 (2001)Google Scholar
  2. 2.
    Hespanha, J., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proceedings of the IEEE 95(1), 138–162 (2007)CrossRefGoogle Scholar
  3. 3.
    Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control 52(9), 1680–1685 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Mazo Jr., M., Anta, A., Tabuada, P.: On self-triggered control for linear systems: Guarantees and complexity. In: European Control Conference (2009)Google Scholar
  5. 5.
    Battistelli, G., Benavoli, A., Chisci, L.: Data-driven communication for state estimation with sensor networks. Automatica 48(5), 926–935 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Sánchez, J., Guarnes, M.A., Dormido, S.: On the application of different event-based sampling strategies to the control of a simple industrial process. Sensors 9(9), 6795–6818 (2009)CrossRefGoogle Scholar
  7. 7.
    Sijs, J., Lazar, M.: Event based state estimation with time synchronous updates. IEEE Transactions on Automatic Control 57(10), 2650–2655 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Miskowicz, M.: Send-on-delta concept: An event-based data reporting strategy. Sensors 6(1), 49–63 (2006)CrossRefGoogle Scholar
  9. 9.
    Kamen, E., Su, J.: Introduction to Optimal Estimation. Advanced Textbooks in Control and Signal Processing. Springer, London (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Simon, D.: Optimal State Estimation: Kalman, H ∞ , and Nonlinear Approaches. Wiley (2006)Google Scholar
  11. 11.
    Duton, K., Thompson, S., Barraclough, B.: The art of control engineering. Addison-Wesley (1997)Google Scholar
  12. 12.
    Julier, S., Uhlmann, J.: Unscented filtering and nonlinear estimation. Proceedings of the IEEE 92(3), 401–422 (2004)CrossRefGoogle Scholar
  13. 13.
    Santos, C., Mazo Jr., M., Espinosa, F.: Adaptive self-triggered control of a remotely operated robot. In: Herrmann, G., Studley, M., Pearson, M., Conn, A., Melhuish, C., Witkowski, M., Kim, J.-H., Vadakkepat, P. (eds.) TAROS-FIRA 2012. LNCS, vol. 7429, pp. 61–72. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Levine, W.: The control handbook. IEEE-Press (1996)Google Scholar
  15. 15.
    Lee, J.H., Hashimoto, H.: Intelligent space. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), vol. 2, pp. 1358–1363 (2000)Google Scholar
  16. 16.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Miguel Martínez
    • 1
    Email author
  • Felipe Espinosa
    • 1
  • Alfredo Gardel
    • 1
  • Carlos Santos
    • 1
  • Jorge García
    • 1
  1. 1.Electronics DepartmentUniversity of AlcaláAlcalá de HenaresSpain

Personalised recommendations