Advertisement

Perception and Navigation in Unknown Environments: The DARPA Robotics Challenge

  • Eduardo J. MolinosEmail author
  • Ángel Llamazares
  • Noelia Hernández
  • Roberto Arroyo
  • Andrés Cela
  • José Javier Yebes
  • Manuel Ocaña
  • Luis Miguel Bergasa
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 253)

Abstract

This paper presents different techniques to achieve the tasks proposed in the DARPA (Defense Advanced Research Projects Agency) VRC (Virtual Robotics Challenge), which entails the recognition of objects, the robot localization and the mapping of the simulated environments in the Challenge. Data acquisition relies on several sensors such as a stereo camera, a 2D laser, an IMU (Inertial Motion Unit) and stress sensors. Using the map and the position of the robot inside it, we propose a safe path planning to navigate through the environment using an Atlas humanoid robot.

Keywords

Humanoid Robots Navigation Mapping Perception DARPA Robotics Challenge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Robotics Challenge, http://www.theroboticschallenge.org/
  2. 2.
    Robot Operating System (ROS), http://www.ros.org
  3. 3.
    Gazebo Simulator, http://www.gazebosim.org
  4. 4.
  5. 5.
  6. 6.
    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees. Autonomous Robots (2013)Google Scholar
  7. 7.
    Durrant-Whyte, H., Bailey, T.: Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms. IEEE Robotics and Automation Magazine 2 (2006)Google Scholar
  8. 8.
    Hornung, A., Dornbush, A., Likhachev, M., Bennewitz, M.: Anytime Search-Based Footstep Planning with Suboptimality Bounds. In: Proc. of the IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS (2012)Google Scholar
  9. 9.
    Likhachev, M., Gordon, G., Thrun, S.: ARA*: Anytime A* with Provable Bounds on Sub-Optimality. In: Neural Information Processing Systems 16: Proceedings of the 2003 Conference (NIPS 2003). MIT Press (2004)Google Scholar
  10. 10.
    Zhang, H.: The optimality of Naive Bayes. In: FLAIRS Conference, pp. 562–567 (2004)Google Scholar
  11. 11.
    Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: A Library for Large Linear Classification. Journal of Machine Learning Research 9, 1871–1874 (2008)zbMATHGoogle Scholar
  12. 12.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 886–893 (2005)Google Scholar
  13. 13.
    Novak, C.L., Shafer, S.A.: Anatomy of a color histogram. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 599–605 (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Eduardo J. Molinos
    • 1
    Email author
  • Ángel Llamazares
    • 1
  • Noelia Hernández
    • 1
  • Roberto Arroyo
    • 1
  • Andrés Cela
    • 1
  • José Javier Yebes
    • 1
  • Manuel Ocaña
    • 1
  • Luis Miguel Bergasa
    • 1
  1. 1.Department of ElectronicsUniversity of AlcaláMadridSpain

Personalised recommendations