Secure Re-publication of Dynamic Big Data

  • Kok-Seng Wong
  • Myung Ho Kim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8300)


Dynamic data re-publication is now an emerging issue in data publishing due to the awareness of privacy disclosure in data sharing. Existing models such as k-anonymity and l-diversity only aim to provide data protection for single release. In practical, new data arrive continuously and up-to-date dataset should be released from time to time. The release of multiple anonymized datasets (microdata) allows the attackers to learn extra knowledge by cross examines the releases within a targeted timeframe. In this paper, we study the data re-publication of dynamic big data based on the m-invariance model. In particular, we reconstruct the existing model to support re-publication for big data. We consider re-publication with insertion, deletion and update of the existing records. Counterfeit records will be used to maintain the update pattern of all the releases and to increase the false information in the knowledge learned by the attacker from the released microdata.


privacy-preserving data publishing dynamic data re-publication big data privacy m-invariance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10, 557–570 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barbaro, M., Zeller, T.: A Face Is Exposed for AOL Searcher No. 4417749. The New York Times (2006) Google Scholar
  3. 3.
    de Montjoye, Y.-A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the Crowd: The privacy bounds of human mobility. Nature Scientific Reports 3 (2013)Google Scholar
  4. 4.
    Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (abstract). In: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, p. 188. ACM, Seattle (1998)CrossRefGoogle Scholar
  5. 5.
    Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1, 3 (2007)CrossRefGoogle Scholar
  6. 6.
    Martin, D.J., Kifer, D., Machanavajjhala, A., Gehrke, J., Halpern, J.Y.: Worst-Case Background Knowledge for Privacy-Preserving Data Publishing. In: 23rd IEEE International Conference on Data Engineering (ICDE), pp. 126–135 (2007)Google Scholar
  7. 7.
    Zhang, Q., Koudas, N., Srivastava, D., Yu, T.: Aggregate Query Answering on Anonymized Table. In: IEEE 23rd International Conference on Data Engineering, Istanbul, Turkey, pp. 116–125 (2007)Google Scholar
  8. 8.
    Wang, K., Fung, B.C.M.: Anonymizing sequential releases. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 414–423. ACM, Philadelphia (2006)CrossRefGoogle Scholar
  9. 9.
    Wong, R.C.-W., Li, J., Fu, A.W.-C., Wang, K. (alpha, k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 754–759. ACM, Philadelphia (2006)CrossRefGoogle Scholar
  10. 10.
    Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: Privacy Beyond k-Anonymity and l-Diversity. In: International Conference on Data Engineering (ICDE), Istanbul, Turkey, pp. 106–115 (2007)Google Scholar
  11. 11.
    Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A survey of recent developments. ACM Comput. Surv. 42, 1–53 (2010)CrossRefGoogle Scholar
  12. 12.
    Byun, J.-W., Sohn, Y., Bertino, E., Li, N.: Secure anonymization for incremental datasets. In: Jonker, W., Petković, M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 48–63. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Pei, J., Xu, J., Wang, Z., Wang, W., Wang, K.: Maintaining K-Anonymity against Incremental Updates. In: Proceedings of the 19th International Conference on Scientific and Statistical Database Management, p. 5. IEEE Computer Society (2007)Google Scholar
  14. 14.
    Xiao, X., Tao, Y.: m-Invariance: Towards Privacy Preserving Re-publication of Dynamic Datasets. In: ACM SIGMOD International Conference on Management of Data, Beijing, China, pp. 689–700 (2007)Google Scholar
  15. 15.
    Bu, Y., Fu, A.W.C., Wong, R.C.W., Chen, L., Li, J.: Privacy preserving serial data publishing by role composition. Proc. VLDB Endow. 1, 845–856 (2008)CrossRefGoogle Scholar
  16. 16.
    He, Y., Barman, S., Naughton, J.F.: Preventing equivalence attacks in updated, anonymized data. In: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, pp. 529–540. IEEE Computer Society (2011)Google Scholar
  17. 17.
    Fung, B.C.M., Wang, K., Fu, A.W.-C., Pei, J.: Anonymity for continuous data publishing. In: Proceedings of the 11th International Conference on Extending Database Technology: Advances in Database Technology, pp. 264–275. ACM, Nantes (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Kok-Seng Wong
    • 1
  • Myung Ho Kim
    • 1
  1. 1.School of Computer Science and EngineeringSoongsil UniversitySeoulSouth Korea

Personalised recommendations