Numerical Simulation of Coastal Flows in Open Multiply-Connected Irregular Domains

  • Yuri N. SkibaEmail author
  • Denis M. Filatov
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 256)


We develop a numerical method for the simulation of coastal flows in multiply-connected domains with irregular boundaries that may contain both closed and open segments. The governing equations are the shallow-water model. Our method involves splitting of the original nonlinear operator by physical processes and by coordinates. Specially constructed finite-difference approximations provide second-order unconditionally stable schemes that conserve the mass and the total energy of the discrete inviscid unforced shallow-water system, while the potential enstrophy results to be bounded, oscillating in time within a narrow range. This allows numerical simulation of coastal flows adequate both from the mathematical and physical standpoints. Several numerical experiments, including those with complex boundaries, demonstrate the skilfulness of the method.


Coastal Shallow-water Flows Conservative Finite Difference Schemes Multiply-connected Domains Irregular Boundaries Operator Splitting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agoshkov, V.I., Saleri, F.: Recent Developments in the Numerical Simulation of Shallow Water Equations. Part III: Boundary Conditions and Finite Element Approximations in the River Flow Calculations. Math. Modelling 8, 3–24 (1996)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Arakawa, A., Lamb, V.R.: A Potential Enstrophy and Energy Conserving Scheme for the Shallow-Water Equation. Mon. Wea. Rev. 109, 18–36 (1981)CrossRefGoogle Scholar
  3. 3.
    Bouchut, F., Le Sommer, J., Zeitlin, V.: Frontal Geostrophic Adjustment and Nonlinear Wave Phenomena in One-dimensional Rotating Shallow Water. Part II: High-Resolution Numerical Simulations. J. Fluid Mech. 514, 35–63 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Heikes, R., Randall, D.A.: Numerical Integration of the Shallow-Water Equations on a Twisted Icosahedral Grid. Part I: Basic Design and Results of Tests. Mon. Wea. Rev. 123, 1862–1880 (1995)CrossRefGoogle Scholar
  5. 5.
    Jirka, G.H., Uijttewaal, W.S.J.: Shallow Flows. Taylor & Francis, London (2004)Google Scholar
  6. 6.
    Kundu, P.K., Cohen, I.M., Dowling, D.R.: Fluid Mecanics, 5th edn. Academic Press, London (2012)Google Scholar
  7. 7.
    LeVeque, R.J., George, D.L.: High-Resolution Finite Volume Methods for the Shallow-Water Equations with Bathymetry and Dry States. In: Yeh, H., Liu, P.L., Synolakis, C.E. (eds.) Advanced Numerical Models for Simulating Tsunami Waves and Runup, pp. 43–73. World Scientific Publishing, Singapore (2007)Google Scholar
  8. 8.
    Marchuk, G.I.: Methods of Computational Mathematics. Springer, Berlin (1982)Google Scholar
  9. 9.
    Oliger, J., Sündstrom, A.: Theoretical and Practical Aspects of Some Initial Boundary Value Problems in Fluid Dynamics. SIAM J. Appl. Anal. 35, 419–446 (1978)zbMATHGoogle Scholar
  10. 10.
    Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn. Springer (1987)Google Scholar
  11. 11.
    Ringler, T.D., Randall, D.A.: A Potential Enstrophy and Energy Conserving Numerical Scheme for Solution of the Shallow-Water Equations on a Geodesic Grid. Mon. Wea. Rev. 130, 1397–1410 (2002)CrossRefGoogle Scholar
  12. 12.
    Sadourny, R.: The Dynamics of Finite-Difference Models of the Shallow-Water Equations. J. Atmos. Sci. 32, 680–689 (1975)CrossRefGoogle Scholar
  13. 13.
    Salmon, R.: A Shallow Water Model Conserving Energy and Potential Enstrophy in the Presence of Boundaries. J. Mar. Res. 67, 1–36 (2009)CrossRefGoogle Scholar
  14. 14.
    Shokin, Y.I.: Completely Conservative Difference Schemes. In: de Vahl Devis, G., Fletcher, C. (eds.) Computational Fluid Dynamics, pp. 135–155. Elsevier, Amsterdam (1988)Google Scholar
  15. 15.
    Simonnet, E., Ghil, M., Ide, K., Temam, R., Wang, S.: Low-Frequency Variability in Shallow-Water Models of the Wind-Driven Ocean Circulation. Part I: Steady-State Solution. J. Phys. Ocean. 33, 712–728 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Skiba, Y.N.: Total Energy and Mass Conserving Finite Difference Schemes for the Shallow-Water Equations. Russ. Meteorol. Hydrology 2, 35–43 (1995)MathSciNetGoogle Scholar
  17. 17.
    Skiba, Y.N., Filatov, D.M.: Conservative Arbitrary Order Finite Difference Schemes for Shallow-Water Flows. J. Comput. Appl. Math. 218, 579–591 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Skiba, Y.N., Filatov, D.M.: Simulation of Soliton-like Waves Generated by Topography with Conservative Fully Discrete Shallow-Water Arbitrary-Order Schemes. Internat. J. Numer. Methods Heat Fluid Flow 19, 982–1007 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Vol’tsynger, N.E., Pyaskovskiy, R.V.: The Theory of Shallow Water. Gidrometeoizdat, St. Petersburg (1977)Google Scholar
  20. 20.
    Vreugdenhil, C.B.: Numerical Methods for Shallow-Water Flow. Kluwer Academic, Dordrecht (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Centre for Atmospheric Sciences (CCA)National Autonomous University of Mexico (UNAM)Mexico CityMexico
  2. 2.Centre for Computing Research (CIC)National Polytechnic Institute (IPN)Mexico CityMexico

Personalised recommendations