Self-adjusting Grid Networks to Minimize Expected Path Length

  • Chen Avin
  • Michael Borokhovich
  • Bernhard Haeupler
  • Zvi Lotker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8179)


Given a network infrastructure (e.g., data-center or on-chip-network) and a distribution on the source-destination requests, the expected path (route) length is an important measure for the performance, efficiency and power consumption of the network. In this work we initiate a study on self-adjusting networks: networks that use local-distributed mechanisms to adjust the position of the nodes (e.g., virtual machines) in the network to best fit the route requests distribution. Finding the optimal placement of nodes is defined as the minimum expected path length (MEPL) problem. This is a generalization of the minimum linear arrangement (MLA) problem where the network infrastructure is a line and the computation is done centrally. In contrast to previous work, we study the distributed version and give efficient and simple approximation algorithms for interesting and practically relevant special cases of the problem. In particular, we consider grid networks in which the distribution of requests is a symmetric product distribution. In this setting, we show that a simple greedy policy of position switching between neighboring nodes to locally minimize an objective function, achieves good approximation ratios. We are able to prove this result using the useful notions of expected rank of the distribution and the expected distance to the center of the graph.


Virtual Machine Switching Strategy Route Request Grid Network Data Center Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poess, M., Nambiar, R.: Energy cost, the key challenge of today’s data centers: a power consumption analysis of tpc-c results. Proceedings of the VLDB Endowment 1(2), 1229–1240 (2008)CrossRefGoogle Scholar
  2. 2.
    U.S. Environmental Protection Agency: Report to congress on server and data center energy efficiency public law 109-431 (2007)Google Scholar
  3. 3.
    Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., McKeown, N.: Elastictree: Saving energy in data center networks. In: Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation, p. 17. USENIX Association (2010)Google Scholar
  4. 4.
    Mirza-Aghatabar, M., Koohi, S., Hessabi, S., Pedram, M.: An empirical investigation of mesh and torus noc topologies under different routing algorithms and traffic models. In: 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, DSD 2007, pp. 19–26. IEEE (2007)Google Scholar
  5. 5.
    Greene, K.: TR10: Software-Defined NetworkingGoogle Scholar
  6. 6.
    Hoelzle, U.: Openflow @ google, Open Networking Summit (2012)Google Scholar
  7. 7.
    McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)CrossRefGoogle Scholar
  8. 8.
    Gummadi, K., Dunn, R., Saroiu, S., Gribble, S., Levy, H., Zahorjan, J.: Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In: Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 314–329. ACM (2003)Google Scholar
  9. 9.
    Klemm, A., Lindemann, C., Vernon, M., Waldhorst, O.: Characterizing the query behavior in peer-to-peer file sharing systems. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, pp. 55–67. ACM (2004)Google Scholar
  10. 10.
    Johnson, D., Garey, M.: Computers and intractability: A guide to the theory of np-completeness. Freeman&Co., San Francisco (1979)zbMATHGoogle Scholar
  11. 11.
    Sleator, D., Tarjan, R.: Self-adjusting binary search trees. Journal of the ACM (JACM) 32(3), 652–686 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lis, M., Shim, K., Cho, M., Fletcher, C., Kinsy, M., Lebedev, I., Khan, O., Devadas, S.: Brief announcement: distributed shared memory based on computation migration. In: SPAA, pp. 253–256. ACM (2011)Google Scholar
  13. 13.
    Batista, D., da Fonseca, N., Granelli, F., Kliazovich, D.: Self-adjusting grid networks. In: IEEE International Conference on Communications, ICC 2007, pp. 344–349. IEEE (2007)Google Scholar
  14. 14.
    Shang, Y., Li, D., Xu, M.: Energy-aware routing in data center network. In: Proceedings of the First ACM SIGCOMM Workshop on Green Networking 2010, pp. 1–8. ACM, New York (2010)Google Scholar
  15. 15.
    Tang, M., Liu, Z., Liang, X., Hui, P.M.: Self-adjusting routing schemes for time-varying traffic in scale-free networks. Phys. Rev. E 80(2), 026114 (2009)Google Scholar
  16. 16.
    Zhang, H., Liu, Z., Tang, M., Hui, P.: An adaptive routing strategy for packet delivery in complex networks. Physics Letters A 364(3-4), 177–182 (2007)CrossRefzbMATHGoogle Scholar
  17. 17.
    Jain, N., Menache, I., Naor, J(S.), Shepherd, F.B.: Topology-aware VM migration in bandwidth oversubscribed datacenter networks. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 586–597. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Bansal, N., Lee, K.W., Nagarajan, V., Zafer, M.: Minimum congestion mapping in a cloud. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2011, pp. 267–276. ACM, New York (2011)CrossRefGoogle Scholar
  19. 19.
    Chung, F.: Labelings of graphs. Selected Topics in Graph Theory 3, 151–168 (1988)Google Scholar
  20. 20.
    Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34, 313–356 (2002)CrossRefGoogle Scholar
  21. 21.
    Bhatt, S., Cosmadakis, S.: The complexity of minimizing wire lengths in vlsi layouts. Information Processing Letters 25(4), 263–267 (1987)CrossRefzbMATHGoogle Scholar
  22. 22.
    Bhatt, S., Thomson Leighton, F.: A framework for solving vlsi graph layout problems. Journal of Computer and System Sciences 28(2), 300–343 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Demaine, E.D., Fekete, S.P., Rote, G., Schweer, N., Schymura, D., Zelke, M.: Integer point sets minimizing average pairwise l1 distance: What is the optimal shape of a town? Comput. Geom. Theory Appl. 44(2), 82–94 (2011)CrossRefzbMATHGoogle Scholar
  24. 24.
    Avin, C., Haeupler, B., Scheideler, C., Schmid, S.: Locally self-adjusting tree networks. In: 27th IEEE International Parallel and Distributed Processing Symposium, IPDPS (2013)Google Scholar
  25. 25.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rabani, Y., Sinclair, A., Wanka, R.: Local divergence of markov chains and the analysis of iterative load-balancing schemes. In: Focs, p. 694. IEEE Computer Society (1998)Google Scholar
  27. 27.
    Mukherjee, S., Gupte, N.: Gradient mechanism in a communication network. Phys. Rev. E 77(3), 036121 (2008)Google Scholar
  28. 28.
    Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing, pp. 131–140. ACM (2009)Google Scholar
  29. 29.
    Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: A self-stabilizing and local delaunay graph construction. Algorithms and Computation, 771–780 (2009)Google Scholar
  30. 30.
    Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  31. 31.
    Karp, R.: Reducibility among combinational problems. Complexity of Computer Computations, 85–104 (1972)Google Scholar
  32. 32.
    Leiserson, C.E.: Fat-trees: universal networks for hardware-efficient supercomputing. IEEE Trans. Comput. 34(10), 892–901 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chen Avin
    • 1
  • Michael Borokhovich
    • 1
  • Bernhard Haeupler
    • 2
  • Zvi Lotker
    • 1
  1. 1.Ben-Gurion University of the NegevIsrael
  2. 2.Massachusetts Institute of TechnologyUSA

Personalised recommendations