Rendezvous of Two Robots with Constant Memory

  • Paola Flocchini
  • Nicola Santoro
  • Giovanni Viglietta
  • Masafumi Yamashita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8179)


We study the impact that persistent memory has on the classical rendezvous problem of two mobile computational entities, called robots, in the plane. It is well known that, without additional assumptions, rendezvous is impossible if the entities have no persistent memory, even if the system is semi-synchronous and movements are rigid. It has been recently shown that if each entity is endowed with O(1) bits of persistent visible memory (called lights), they can rendezvous even if the system is asynchronous.

In this paper we investigate the rendezvous problem in two weaker settings in systems of robots endowed with visible lights: in FState, a robot can only see its own light, while in FComm a robot can only see the other robot’s light. Among other things, we prove that, with rigid movements, finite-state robots can rendezvous in semi-synchronous settings, and finite-communication robots are able to rendezvous even in asynchronous ones. All proofs are constructive: in each setting, we present a protocol that allows the two robots to rendezvous in finite time.


Mobile Robot Local Coordinate System SIAM Journal Rigid Movement Unit Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM Journal on Computing 36, 56–82 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: Proceedings of 33rd IEEE International Conference on Distributed Computing Systems, ICDCS (2013)Google Scholar
  3. 3.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: Gathering. SIAM Journal on Computing 41(4), 829–879 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM Journal on Computing 34, 1516–1528 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 549–560. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of lights: synchronizing asynchronous robots using visible bits. In: Proceedings of the 32nd International Conference on Distributed Computing Systems (ICDCS), pp. 506–515 (2012)Google Scholar
  7. 7.
    Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 46–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: Proceedings of 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 139–148 (2011)Google Scholar
  9. 9.
    Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detection. Theoretical Computer Science 428(13) (2012)Google Scholar
  10. 10.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Morgan & Claypool (2012)Google Scholar
  11. 11.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theo. Comp. Sci. 337(1-3), 147–168 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Izumi, T., Bouzid, Z., Tixeuil, S., Wada, K.: Brief Announcement: The BG-simulation for Byzantine mobile robots. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950, pp. 330–331. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Defago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM Journal on Computing 41(1), 26–46 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gathering from symmetric configurations without global multiplicity detection. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–161. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. parts 1 and 2. SIAM Journal on Control and Optimization 46(6), 2096–2147 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 315–326. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theoretical Computer Science 384(2-3), 222–231 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to gather memory-less mobile robots with limited visibility. ACM Transactions on Autonomous and Adaptive Systems 4(1), 1–27 (2009)CrossRefGoogle Scholar
  19. 19.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal on Computing 28, 1347–1363 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Viglietta, G.: Rendezvous of two robots with visible bits. Technical Report arXiv:1211.6039 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paola Flocchini
    • 1
  • Nicola Santoro
    • 2
  • Giovanni Viglietta
    • 2
  • Masafumi Yamashita
    • 3
  1. 1.EECSUniversity of OttawaOttawaCanada
  2. 2.SCSCarleton UniversityOttawaCanada
  3. 3.Kyushu UniversityFukuokaJapan

Personalised recommendations